Statistics

Constant - a number that is not changing (according to user's wishes)
-'Kavua'
$\underline{\text { Variable - a unit that changes according to what people plug in (i.e. } x \text {) }) ~(1)}$
-Mishtane
Dependant variable variable that changes dependant on another number in the equation
-Mishtane talui
Independent variable a variable that does not necessarily change depending on other variables
-Mishtane bilti talui

Example: $\mathrm{Y}=\mathrm{f}(\mathrm{X})$
Dependent: Y
Independent: X
Qualitative- something relating to a quality of something - not \#'s
Quantitative- something relating to \#

Continuous - a variable that has subunits: i.e. 160 cm has subunits (i.e. 160.5)

-Ratzif

Discrete - a variable w/o subunits: i.e. \# of people in class - there can be 13 people in the class but there can't be 13.5 people in the class

-Badid

Infinite-einsofi
Finite -sofi
Population the full group being tested on
Sample the random group from the population chosen to collect data
Graphs tables that portray \#'s in an arranged order
Histograms -frequencies are shown in form of bars
Polygram -a line graph

Oct. 31 tutorial

-Statistics deals w/ the ways to describe and analyze empirical facts
-deals with cases of uncertainty/cases of partial uncertainty
-statistics divides into descriptive (teurit) and conclusive (hiskit) areas
Descriptive- the way to lay out the input/intaken data $\rightarrow \mathrm{SD} /$ mean/frequendcy/etc
Conclusive - drawing conclusions on populations based on samples of that population
-generalizing a rule from data
\rightarrow need descriptive in order to get conclusive.

Sample

Sampling needs be done correctly in order for it to truly represent the population There are 2 basic criteria for good sampling
1)the individuals involved in collecting data have to be chosen RANDOMLY
2)representative of all the population (i.e. has to account for $\boldsymbol{A} \boldsymbol{L} \boldsymbol{L}$ segments of the population
measurement-'madad' - a statistic which can be used to draw conclusions from, that would be applicable to the society.
Parameter- data which was collected from all the population -written w/ latin letters Statistic - collected from sample of population - written w/ English letters

Scales - 'Sulamot'

Important: -In scales, the variables are categories; therefore, $\mathrm{a} \neq \mathrm{b}$

1) Nominal scale

A variable which is not preferred over another \rightarrow just tells you a fact/just defines categories
\rightarrow i.e. ID \# \rightarrow just assigns a fact to a variable \rightarrow a person to a number.
\rightarrow the \# has no consequence
2) Ordinal -'Dirugi'
-the variables are in some sort of order.
Example: I like the following order:
\#1 Coke
\#2 Pepsi
\#3 R.C.
-the \# is not an existing \# \rightarrow you cannot measure preference numerically
\rightarrow the issue is not the difference but the order!
Example: If I want to accept the top 5 students, I do not care the difference b / w them but their ranking
-in any given ordinal scale has more than 5/7 variables, it is called an 'Improved scale’
'Improved Scale' is considered a Interval graph
3) Interval
student \#1 get 90\%
student \#2 gets 80\%
-90% is 10% more than 80%
-but 90% is not necessarily double of 45%
-difference is set, but not the ratio \rightarrow because 0 is not absolute \rightarrow you can't know exactly $0 \% \rightarrow$ if you get 0 , it does not necessarily mean that you know nothing
-the difference b/w 45 and passing is different from 80 and 90 !
-in any given ordinal scale has more than 5/7 variables, it is called an 'Improved scale'
'Improved Scale' is considered a Interval graph

4)Ratio

Ruler \#1 = 4 meters
Ruler \#2 $=2$ meters
Ratio $=2: 1$
Ruler \# 2 is $\times 2$ Ruler \#1
In nominal/Ordinal , \# nor comparable, since no absolute 0
\rightarrow here, since there is an absolute 0 , the 2 variables are comparable

Scales \rightarrow	NOMINAL	ORDINAL	INTERVAL	RATIO
$\begin{aligned} & \overline{\text { IDENTITY }} \\ & \mathrm{a} \neq \mathrm{b} \end{aligned}$	\bar{V}	\checkmark	\bar{V}	\checkmark
ORDER What is more/less	X	\checkmark	\checkmark	\checkmark
DEFINITE DIFFERENCE $\mathrm{a}-\mathrm{b}$	X	X	$\sqrt{ }$	\checkmark
$\begin{aligned} & \text { RATIO } \\ & \text { a/b } \end{aligned}$	X	X	X	\checkmark
TRANSFER (manipulation)	Yes, as long as $\mathrm{a} \neq \mathrm{b}$		Only in linear i.e. when you manipulate both variables	Multiplication of division

--
Some psych. think psych is ordinal
most think there's measurable difference to diff. People -proportional
-when giving an questionnaire, some psych like to give linear graph - shows more accurately difference $b / w+/$ - feelings

Distribution

IQ of 6 imaginary people
124118123109117114
-to analyze info, we need to distribute it (usually in chart)

Class interval	F (Frequency)	CF (Cumulative Frequency)
$125-129$	0	6
$120-124$	2	6
$115-119$	2	4
$110-114$	1	2
$105-109$	1	1

Q) H.M. intervals do I need
A) Absolutely, no more than 20 -Recommended: no more than 10
*Preferable intervals: 5;10;20;50;100
*on chart, put \#s in descending order

Class interval	Real Interval/ Exact interval
$125-129$	$124.5-129.5$
$120-124$	$119.5-124.5$
$115-119$	$114.5-119.5$
$110-114$	$109.5-114.5$
$105-109$	$104.5-109.5$
Discrete	Continuous

-Depending on what's being measured, there might be a subunit. In case you can't measure the subunit, the intervals in the 'real interval' column apply

2 kinds of experiments

1)Experimental: researchers manipulate the independent variable and compares it's effects on dependant variables

Example:
->If researchers want to see effect on LSD on mood, he gives 3 groups
LSD/Prozac/nothing to see how different independent variables effect group (dep. variable)
2) Observational/correlation
\rightarrow When researchers can't decide which is indep/dep variable
\rightarrow Experiment: If women have lover IQ scores, we do not know if the ind/dep variable is gender/environment influence etc

Nov. 13, 2000

In a cumulative graph, the line never goes down, since the variable is cumulative: the variable is really the addition of all the variables up to and including the new one.

Σ-Sigma

$\mathrm{I}=\mathrm{n}$
Σ Xi
$\mathrm{i}=1$

The I is the variable you will add. Therefore $\mathrm{i}=1$ is the first variable
The N represents the last variable that you will add

Example

i=4
\sum_{Xi}
$\mathrm{i}=1$

$x 1=4$	Therefore,
$x 2=5$	$\mathrm{i}=4$
$\mathrm{x} 3=6$	
$\mathrm{x} 4=10$	$\sum_{\mathrm{i} i} 4+5+6+10=25$

$\mathrm{L}=\mathrm{nc}$

c is a constant

Example

i=5
Σ_{4}
$\mathrm{i}=1$
$4+4+4+4+4$
(5×4, because, the diff. b / w bottom and top variables is 5
$\sum \mathrm{CXi}_{\mathrm{i}}=\mathrm{c} \sum \mathrm{Xi}_{\mathrm{i}}$

Exercise

X1=1

$\mathrm{X} 3=3$	
$\mathrm{Y} 1=7$	
$\mathrm{Y} 2=8$	
$\mathrm{Y} 3=10$	
$\mathrm{C}=1$	
$\Sigma(\mathrm{X}-\mathrm{C})$	$\begin{aligned} & (1-1)+(2-1)+(3-1) \\ & =3 \end{aligned}$
$\Sigma(\mathrm{CY} 1)$	$\begin{aligned} & (1 \times 7)+(1 \times 8)+(1 \times 10) \\ & =25 \end{aligned}$
SXY	$\begin{aligned} & (1 \times 7)+(2 \times 8)+(3 \times 10) \\ & =53 \end{aligned}$
$\left(\sum X\right)\left(\sum Y\right)$	$\begin{aligned} & (1+2+3) \times(7+8+10) \\ & =6 \times 25 \\ & =150 \end{aligned}$
$\sum \mathrm{X}^{2}$	$\begin{aligned} & 1^{2}+2^{2}+3^{2} \\ & =1+4+9 \\ & =14 \end{aligned}$
$\left(\sum \mathrm{X}\right)^{2}$	$\begin{aligned} & (1+2+3)^{2} \\ & =6^{2} \\ & =36 \end{aligned}$

Day	Journeys (x)	Food (y)
Sunday	10	100
Mon.	10	80
Tues	20	100

Rule \#1

n

$\Sigma(\mathrm{Xi}+\mathrm{Yi})=\Sigma \mathrm{Xi}+\Sigma \mathrm{Yi}$

I=1

Rule \#2

$\sum(X i-Y i)=\sum X i-\sum Y i$

Rule \#3

N n
$\Sigma \mathrm{Cxi}=\mathrm{C} \sum \mathrm{Xi}$
$\mathrm{I}=1$
$\mathrm{I}=1$

Example: if above sum was in US\$ which is 4 shekels; the constant is 4 $(40 \times 10)+(4 \times 10)+(4 \times 20)=160$
$=4(10+10+20)$

Rule \#4

n

$\Sigma \mathrm{Ci}=\mathrm{NC}$

I=1

Example (there are 3 days) $\mathrm{N}=3$; c=4
-->4x4x4=64

Rule \#5

n

$\sum \mathrm{XiYi} \neq \sum \mathrm{Xi}+\sum \mathrm{Yi}$

$\mathrm{I}=1$

Rule \#6

N
$\sum \mathrm{Xi} / \mathrm{Yi} \neq \quad \sum \mathrm{Xi} / \sum \mathrm{Yi}$
I=1

Rule \#7

N
$\sum(\mathrm{Xi})^{2} \neq\left(\sum \mathrm{Xi}\right)^{2}$

Rule \#8

```
N
\Sigma(C+Xi)}=\textrm{C}+\Sigma\textrm{Xi
I=1
```


Double Sigma

\rightarrow tells what way you add the variables
if $\Sigma \mathrm{Xj}$ is $\mathrm{b} / \mathrm{f} \Sigma \mathrm{Xi}$, you do the sideways; if I is $\mathrm{b} / \mathrm{f} \mathrm{j}$, you do the addition downwards

$\mathrm{I} \downarrow \mathrm{J} \rightarrow$	1	2	3	$\ldots \mathrm{k}$
1	100	110	90	
2	82	93	115	

3				
4				
$\ldots \mathrm{~N}$				

$-\mathrm{k}=$ end of groups
-n - end of the \# of participant w/I each group
k n
$\sum \sum \mathrm{X} \mathfrak{j} \mathbf{i}=\mathrm{X} 11+\mathrm{X} 12 \ldots \mathrm{Xk}+\mathrm{X} 21 \ldots . \mathrm{Xk}$
$j=1 \quad \mathrm{I}=1$

Central tendencies:

-ways to describe the middle:
1)mean
2)median
3)mode

MEAN

Average $=$ mean
Two formulas to write the mean
1)

2)

Explanation of formula 2
i.e. variables: 2,4,4,6

Xi	$F \mathrm{i}$
2	1
4	2
6	1

```
-->Fi = N
-->
\SigmafiXi
\Sigmafi
_ -average of a sample
X -called mu
    symbol: }
```

*If you take off average from each of the \# and then square them respectively it will get you the smallest sum. Any other manipulation to the \#'s b/f squaring will get a higher total sum of the individual \#'s.
i.e. $70 ; 80 ; 90 \rightarrow$ average $=80$
$(70-80)^{2}=100$
$(80-80)^{2}=0$
$(90-80)^{2}=100$
$100+0+100=200$

Median

The \# that splits the series of \#'s in $1 / 2$
i.e. $1 ; 3 ; 6 ; 7 ; 8 ; 9 ; 10$

In case of even \# of \#'s

70;70; $\downarrow 85 ; 90$
\rightarrow the median would be half way $\mathrm{b} / \mathrm{w} 2^{\text {nd }}$ and $3^{\text {rd }} \#$
(in this case, 77.5)
In case where there are an even \# of \# and the majority of them (aspecially along the $1 / 2$ way mark is 1 \#
i.e.

70;70;70;90
We take the exact values

70	$69.5-70.5$
70	$69.5-70.5$

70	$69.5-70.5$
90	$89.5-90.5$

-Median is $2 / 3$ of the way through the identical \# (b/w the $2^{\text {nd }}$ and $3^{\text {rd }} 70$)
\rightarrow median is $2 / 3$ of $69.5 \rightarrow 70.5$
\rightarrow median $=70.17$

Example 2

69	$59.5-60.5$
70	$69.5-70.5$
70	$69.5-70.5$
70	$69.5-70.5$

-Median is $1 / 3$ of the way through the identical \# (b/w the $1^{\text {st }}$ and $2^{\text {nd }} 70$)
\rightarrow median is $1 / 3$ of $69.5 \rightarrow 70.5$
\rightarrow median $=69.67$
Signs for Median: $\mathrm{Md} / \mathrm{Mdn} / \mathrm{Mn}$ (mn could also be mean)
\rightarrow though nothing official - researcher must define it b / f using it \rightarrow no consensus

Mode

Most common \#
$70 ; 90 ; 90 \rightarrow$ mode $=90$
Bimodal-2 modes
70;70;91;91;92
modes $=70 ; 91$
-There are cases w/o a mode!

Normal distribution chart - Gauss

[will appear on test]

-only in his normative graph is median/mean/mode the same
When advertising for a job for a teller, (say, at a bank)
\rightarrow not honest advertising to give average of all workers of the bank \rightarrow the mean will be higher than the tellers' average pay

Honest advertising:
1)the mean of the tellers
2)the mode of all the workers

Negative skew - a case of more variables on the negative side than on the positive side Positive skew -a case of more variables on the positive extreme
*average is influenced more by extremes than median

Range

Case 1
70
$80 \rightarrow$ mean/average/mode
90

Case 2

79
$80 \rightarrow$ mean/average/mode
82
Range in case $1=20$
Range in case $2=2$

Tutorial Nov. 14, 2000

2 ways of organizing data:
1)tables
2)graphs

Frequency tables

A coin is tossed 10 times: $\mathrm{H}=$ heads, $\mathrm{T}=$ tails
HT
TH
HH
TH
HT

Value of coins show:	(f)requency	Cf / F (small cf or	P (proportional	Cp Cumulative

		capital F)	frequency)	proportional frequency
Tails	4	4	$4 / 10=40 \%$	$4 / 10=40 \%$
Heads	6	10	$6 / 10=60 \%$	$10 / 10=100 \%$

Proportional Frequency

-procentage/average
-f/n (frequency over total \#)
-allows you to deal w. \# in relation to all the research
-also, we do not have to deal w/ large \#.
-allows us to compare various measurements (i.e. 20 toss vs. 50 toss of coin)

Cumulative Proportional Frequency

CF/N

--
-Continuous table is slightly different
\rightarrow we will put \# in interval class
Example

Time of 300 runners running 100m	in seconds)	
Exact limits	Running time	Frequency
$16-17.999 \ldots$	$16-17$	50
$14-15.999 \ldots$	$14-15$	100
$12-13.999 \ldots$	$12-13$	100
$10-11.999 \ldots$	$10-11$	50

Title of a chart

-Has to be accurate
-who is the population
-\# of the population
-what is being tested (what is the variable?)
-other variables if possible
Chart
-has to include all variables
\rightarrow all variables need to be in a category
\rightarrow not more than 1 category

Rules of making a table

-researcher has to decide how to present:
1)\# and range of category

Researcher has \# of categories	$8 / 4=2$ (range divided by \# of categories = size of category $)$
Range/\#of categories = size of category	$8 / 2=4$
Researcher has range of categories	
Range of research/range of category $=$ \# of categories	$8=$ range of total data $2=$ range of category $4=\#$ of categories
Write top value of categories	
Write in the correct column the right top number of that class interval's range	
Write bottom value of categories	
1 unit about top \# of category below	
Putting in the exact limits	
-Or writing them at the bottom of the chart as a definition	

Graphs

PIE
-Nominal graph (qualitative)
-reflects 100% of all categories
-divided proportionally

50\% -Brown Eyes
30\% -Green Eyes
20\% - Blue Eyes

To make own pie-chart

$360 \times 20 / 100=72$
The angle in the blue eye's slice is 72 degrees

Bar Chart

Please note the space b / w bars: it is b / c this graph is not continuous
Please note: if you want to connect bars w/ lines, it has to be w/ a dotted line, since those variables are really discrete

Histogram

-continuous
Please note: the area of the bar reflects frequency
\rightarrow area of bar = proportional to \# of cases (frequency)
Example:

	$\underline{\text { Exact value }}$	$\underline{\text { Frequency }}$	\underline{d}
$0-4$	$0-4.99 \ldots$	20	$20 / 5=4$
$5-9$	$5-9.99 \ldots$	30	$30 / 5=6$
$10-19$	$10-19.99 \ldots$	40	$40 / 10=4$

```
D
F/I=d
F =frequency;
I =class frequency;
D=takes into account both height and width of bar in a histogram
```


first box $=20$ units (5×4)
Polygram: - if you want to draw a line in the histogram to show the change, it has to be a continuous line (unlike the discrete charts, where the line is dotted)
*Line has to be straight!
*has to hit the box at the horizontal midpoint
midpoint - the unit half way b / w largest and lowest \# within a range

Polygon

A graph w/ a straight line to show values, as opposed to boxes

Curves

-a continuous chart where each frequency variable is a small line, which is adjacent to the next line
-->if you connect all the tops of the lines, you get a curved-

1) unison distribution/blocks

2)Gauss (normative)
-see above
3)

A-symmetric distribution

1)asymmetric distribution with a positive skew:
-->a gauss chart $\mathrm{w} /$ longer positive extreme
2)asymmetric distribution $w /$ negative skew
-->A gauss chart w/ longer negative extreme

Variance

\rightarrow have to know those formula by heart!!!!

Difference of Sample	Difference of population
$\mathrm{S}^{2}=\frac{\sum(\mathrm{Xi}-/ \mathrm{X})^{2}}{\mathrm{n}-1}$	$\sigma^{2}=\frac{\sum(\mathrm{Xi}-/ \mathrm{X})^{2}}{\mathrm{n}}$
$\mathrm{Xi}=$ midpoint of class interval, when class interval is a range of \#'s	

$/ \mathrm{x}=\mathrm{x}$

$S=$ Standard of Variation (a.k.a. SD)

Size of unit of difference in the Normative distribution graph
Example: 70;80;90

```
/x=80
\(S^{2}=\sum(x-/ x)^{2}\)
    n -1
\(70-80=-10\)
\(80-80=0\)
\(90-80=10\)
\(S^{2}=\sum(-10)^{2}+(0)^{2}+(10)^{2}\)
    3-1
\(S^{2}=200 / 2\)
\(\mathrm{S}^{2}=100\)
\(\mathrm{S}=10\)
```


Example:

7;8;x
$/ \mathrm{x}=8$
$\mathrm{x}=$?
x must be $9 \rightarrow$ in order to make mean 8 , the last variable must be 9
\rightarrow in a normal distribution, the samples could be along the range as long as the last one has to be such that the normative distribution is kept
[Irrelevant until later]

Normal distribution

-in a normal distribution, ± 1 degree of variation represents 34% of population of each side of the mean.

$$
\begin{aligned}
& 1=34 \% \\
& 2=13 \% \\
& 3=\% 2
\end{aligned}
$$

-one can add degrees by extending the line of the graph at its end.
\(\left.$$
\begin{array}{l}\text { Example } \\
\begin{array}{|l|l|l|}\hline \boldsymbol{X} / \boldsymbol{\sigma} \\
\text { (SD) }\end{array}\end{array}
$$ \begin{array}{l}Area

(Cumulative percentage of total

variable of the normative distribution)\end{array}\right) \left.\quad\)| Ordinate |
| :--- |
| (height- irrelevant for our purposes. |
| Ordinate's peak= mean | \right\rvert\, | 00 | 00 | 0.3989 |
| :--- | :--- | :--- |
| 1 | 0.3413 | 0.2420 |

2	0.4772	0.0540
3	0.4987	0.0044

$\mathrm{X}=\mathrm{o}=\mathrm{o}$ from average $=$ average.
$\rightarrow 1$ from average $=2$ degree of variation

Tutorial, Nov. 28

Researcher

central measurement
-a measurement that describes the characteristics all the included X values -mode/mean/median

- usually, average gives the most accurate reflector of average- least amount of variance from the variable
\rightarrow problem: affected a lot by extremes
- When describing income of all the staff of a company, average is not accurate, since it influenced by few extremes \rightarrow i.e. executives
\rightarrow the best is median
i.e. average - gives you a general idea about the ballpark range of the measurements -describes a general tendency

Madad netiya merkazit

X	F
4	2
5	4
6	1
7	3
8	1
9	1
10	1

Mode

The most common variable.
Accepted abbreviation:
$\mathrm{Mo} /{ }^{\wedge} \mathrm{x}$
\rightarrow Usually describes nominal variables

You can find out the mode by:

1) Counting
2) Putting data into frequency chart, and mention the variable that happends to have most frequency

- When value of all variables are identical -no mode
- When even \# of variables, the mode is average of 2 middle \#'s
- Bi/trinomials $-2 / 3$ modes

Median

-Median - value of a variable where $1 / 2$ of the variables are above it and $1 / 2$ are below it - $\Sigma|\mathrm{Xi}-\mathrm{Md}|$ is the lowest results (as opposed to $\rightarrow \Sigma\left|\mathrm{Xi} \wedge^{\wedge} \mathrm{X}\right|$)

- Median is not influenced by extreme variables \rightarrow only influenced by $\#$ of variables
- Appropriate for Ordeal/Interval/Ratio

Abbreviation

$\operatorname{Md} / \sim x$

How do we find it?

Formula: $\frac{\mathrm{n}+1}{2}$
\rightarrow When there is an even $\#$ of variables $=$ median is average of 2 middle variables

Mean

Sum of all variables divided by \# of variables

Formula to find out the mean

EXi
N
To find out mean of following chart

X	F
4	2
5	4
6	1
7	3
8	1
9	1
10	1

$/ \mathrm{X}=\sum \mathrm{XiFi}$
$\sum \mathrm{fi}$
\rightarrow If the range of each class interval is more than one, multiply the midpoint of the category as opposed to the actual Class interval, in case of the single \# as the class interval.

Symbols

-/x=population
$-\mu=$ population
Average - only works for interval/ratio scale

Tendencies of Average

- $\mathrm{C}+\mathrm{Xi}=\mathrm{C}+/ \mathrm{X}$
- $\mathrm{CxXi}=\mathrm{Cx} / \mathrm{X}$

Mode/Mean/Median's effect on graphs

Normal distribution $=$ mean $/$ mode $/$ median are all in the middle
Symmetric distribution (2 peaks at both ends of graph and a low-point in the middle \rightarrow / X and Md are in the middle, Mode is at both peaks

Order of influence by extremes:

1) Mean
2) Median
3) Mode

Madad pizur
Standard of variance -
Madad pizur yachasi
Madas kesher
Ways to differenciate \mathbf{b} / \mathbf{w} normal distribution charts

1) Range - difference b / w height lowest values of distribution
$\rightarrow \mathrm{R}=\mathrm{Xmax}-\mathrm{Xmin}$

Example:

-range $=1-9$
$\rightarrow \mathrm{R}=9-1$
$\rightarrow \mathrm{R}=8$

2)Mean deviance

-wants to find how far people are from mean
\rightarrow no practical usage for us
$\Sigma|\mathbf{X}-/ \mathbf{X}|$
n
\rightarrow no usage to us

3)

Variance

-Better version of mean deviance
$\sum(\mathbf{X}-/ \mathbf{X})^{2}$
N

Symbols

$\mathbf{S}^{\mathbf{2}}$ - difference within a sample
$\boldsymbol{\sigma}^{2}$ - difference within a population
$\mathrm{N}=$ population
$\mathrm{N}=$ sample

Standard deviation

-Same thing as variance, just not squared

Symbols

Population: σ
Sample: S or SD

Formula:

$\sigma=\sqrt{(\mathrm{X}-/ \mathrm{X})^{2}}$
N
\rightarrow the answer is a unit of deviation from mean

Other versions of formula - working formula

$\sigma=\frac{\sqrt{ } \sum \mathrm{Xi}^{2}-/ \mathrm{Xi}^{2}}{\mathrm{~N}}$
N
$\sigma=\frac{\sqrt{\sum \mathrm{FiXi}^{2}-/ \mathrm{Xi}^{2}}}{\mathrm{~N}}$
N
$\sigma=\underset{N}{\underline{1}} \sqrt{\mathrm{~N} \sum \mathrm{Xi}^{2}-\left(\sum \mathrm{Xi}^{2}\right)}$

Calculator

-instead of adding the variables normally, us $\mathrm{m}+$ and then press the appropriate function (SD, etc)

Population button $=\mathrm{n}+1$
Sample button: n

Constant rules

1) A constant added does not change the SD or the variable \rightarrow only the mean
2) A constant multiplied stretches out the graph
\rightarrow if you multiply by a constant, S is also multiplied by 3
$\rightarrow \mathrm{S}^{2}$ is multiplied by C^{2}

$$
\underline{\underline{\mathrm{S}}}=\underline{\mathrm{S}^{2}}
$$

Class, December 4, 2000

In IQ, average is $100, \mathrm{SD}$ is 15

Z score / standard deviation

-Defines How Many SD from average a given variable is

Formula
 $\mathbf{Z}=\mathbf{X}-/ \mathbf{X}$
 SD

Example \#1

-if a person has an IQ of 85 (we want to find out his Z score - how many SD he is from average)
$\mathrm{Z}=\underline{85-100}$
15
$Z=-1$
*Therefore, he has a z score of -1
Example \#2
/X=5
$\mathrm{SD}=1.5$
$\mathrm{x}=7$
$\mathrm{z}=\underline{\mathrm{x}-/ \mathrm{x}}$
SD
$\mathrm{z}=7-5$
1.5
$z=2 / 1.5$

Z-1.33
-->look up 1.33 in SD chart
-->91\% have less than him
$X / \sigma=$ difference of average
(please note the script X ; the script x means: $(\mathrm{x}-/ \mathrm{x})$)

Probability

$\mathrm{P}(\mathrm{Ai})=\underline{\text { success }}$
Success +no success
$\boldsymbol{P}=$ probability
$\mathbf{A i}=$ what is the variable

Example:

I throw a coin once and get a head

Formula

Head

Head +tail
$\underline{1}$
$1+1$
Probability=
1/2

Rule \#1

$0 \leq$ (ai) ≤ 1

Rule \#2

$\Sigma \mathrm{P}(\mathrm{Ai})=1$

Rule \#3

$\mathrm{P}(\mathrm{A} 2 \cup \mathrm{~A} 2)=\mathrm{P}(\mathrm{a})+\mathrm{P}(\mathrm{a} 2)-(\mathrm{Pa} 1 \cap \mathrm{~A} 2)$
-->What is the probability of A1 and/or A2s
$\mathrm{Z}=\#$ of SD above/below average
$P(A 2 \cup A 2)=P(a)+P(a 2)-(P a 1 \cap A 2)$
(3RD RULE OF PROBABILITIES)
$\cup=$ union
$\cap=$ intersection/overlap

Example \#1

-Person \#1 has 4 balls
-Person \#2 has 4 balls
-but one of the balls are shared by both!

Therefore:

$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(4)+\mathrm{P}(4)-\mathrm{P}(1)$
-->therefore, there are 7 balls

Example \#2

$\mathrm{P}(\mathrm{A})=0.12$ (people studying at BIU)
$\mathrm{P}(\mathrm{B})=0.11$ (people studying at Haifa)
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(0.12)+\mathrm{P}(11)-\mathrm{P}(0)$
--> = $0.24(24 \%)$ of population is studying at either BIU or Haifa
[there is no overlap of people who study at both \rightarrow overlap $=0$]
$P(A 1 \cup A 2)=P(a)+P(a 2)-(P a 1 \cap A 2)$

Independent events

i.e.
$\mathrm{P}(\mathrm{A})=0.12$ (i.e. the $\%$ of people of the general population who are in BIU)
$\mathrm{P}(\mathrm{B})=0.05$ (i.e. the $\%$ of people of the general population who eat Falafels)

Formulas for independent events:

$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
The answer for this formula is the overlap. you plug that into the original probability formula.

Dependant events

-events that 1 event is dependant on the other (1 event changes the probability of the another event
i.e. H.M. people use umbrellas when it is raining vs. H.H. people buy umbrellas
i.e. probability of taking a specific card out of a deck with out returning it b / f next event
*Note: you can't get an overlap bigger than the smaller variable

Formula for dependant events

$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{A} / \mathrm{B})$
$\mathrm{P}(\mathrm{A} / \mathrm{B})=$ on the condition that A took place, what is the probability of B ?

Bay's formula

-for a case where it is given that a certain event already took place
\rightarrow we want to know the probability of an event dependent on this past event
[cases where the givens show that simple multiplication of probabilities is not the right answer]

Steps To Solve

1) Draw chart
2) Fill out unknowns using the givens
3) Apply \#'s into Bay's formula

Example of Bay's formula:

Male population of uni $=0.6$
Males of university who are married $=0.2$
Female singles in Uni. $=0.3(\overline{\mathrm{~A}} \cup / \mathrm{B}) \rightarrow$ where $\overline{\mathrm{A}}$ overlaps $/ \mathrm{B}$

Steps 1

	Married (B)	Single (/B)	Total
Male (A)	0.2		0.6
Female (Ā)		0.3	
Total			1

Step 2

	Married (B)	Single (/B)	Total
Male (A)	0.2	0.4	0.6
Female $(\overline{\mathbf{A}})$	0.1	0.3	0.4
Total	0.3	0.7	1

Step 3

$$
\mathrm{P}(\overline{\mathrm{~A}} / / \mathrm{B})=\frac{\mathrm{P}(\overline{\mathrm{~A}} \cap / \mathrm{B})}{\mathrm{P}(\overline{\mathrm{~A}})}
$$

$=0.4 / 0.7$
signs for Bay's: given that...., what is...
variance: $\mathrm{S}^{2}=\mathrm{NPQ}$
SD: $=\sqrt{ } \mathbf{S}^{2}$
Average:
Z-score
\rightarrow you can plug in bay's theorem answer into Z-score
-in this case, it is standard to plug in the lower class interval for Xi

Scenarios:

Overlap results is variables are:

1)mutually exclusive $=0$
2) Independent $=p(a) X P(b)$
3) Dependant =whatever answer doesn't correspond to \#1 or \#2

* When the events are mutually exclusive, the $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0 \rightarrow$ there is 0 overlap!

Overlap

Formula
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

- in overlaps where the events are independent of each other
$\rightarrow 1$ does not affect the other
\rightarrow they might overlap
- in dependant events that has no common denominator $\rightarrow \underline{\mathrm{NO} \text { overlap! }}$

Example:
-When wanting to choose a specific card several times , and returning it after each event \rightarrow independent
-if the specific card is not returned \rightarrow dependant [on the previous event] \rightarrow no overlap

Permutation

$\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3) \ldots .1$

Example:

Students A B C D E
you can place them in any order.
-This formula gives you the \# of orders it can possibly have
ABCDE
ADBEC
ACDEB
etc.
-in permutations, the order of variables matter!

- n =\# objects/experiments (\# of variables)
- $\quad \mathrm{r}=\#$ of successes (\# of variables I want to find)

Example

Variables: a, b, c

- $\mathrm{n}=3$
-r=2
ab
ba
ac
ca
bc
cb
Formula
N !
($\mathrm{n}-1$)!
$=3!/(3-2)$!
$=6 / 1$
$=6$ permutations

Combinations

-in combinations, the order of variables is irrelevant

Example

-in variables $\mathrm{a}, \mathrm{b}, \mathrm{c}$
ab
ac
bc

Formula

$\frac{\mathrm{N}!}{\mathrm{R}!(\mathrm{n}-\mathrm{r})!}$
$=6 / 2 \mathrm{x} 1$
$=3$
-in permutations, the order of variables matter!
-in combinations, the order of variables is irrelevant

Binomial

-a formula to find the probability of a specific combination (Note: not a permutation but a combination)

- Probability has no memory
$\mathrm{P}=\%$ of successes
$\mathrm{Q}=\%$ of non-success
$\mathrm{N}=$ number of events
$R=\#$ out of N I am interested in (what are the chances of 3 out of 10 cars being.... $R=3$)
$P(r, n, p)=c(n, r) P^{r} \times q^{n-r}$
Combination formula $[\mathrm{C}(\mathrm{n}, \mathrm{r})]=$ $\frac{\mathrm{N}!}{\mathrm{R}!(\mathrm{n}-\mathrm{r})!}$

Rule \#1

-2 possibilities

Rule \#2

-Independent (probability doesn't change

Formula

(N) X $P^{r} X(1-P)^{n-r}$
(R)

Example \#1

-n=3
$-\mathrm{r}=2$
$=6 / 2 \times(1 / 2)^{2} \times(1-1 / 2)^{3-2}$
$=3 \times 1 / 4 \times 1 / 2$
$=3 / 8$

Example \#2

-Probability of 1 king out of a deck of a king twice
$\mathrm{n}=2$ (I did the experiment twice)
$\mathrm{r}=1$ (\# of successes)
$=1 / 2 \times(4 / 52)^{1} \times(1-4 / 52)^{2-1}$
$=2 \times 4 / 52 \times 48 / 52$
$=8 / 52 \times 48 / 53$
$=2 / 13 \times 12 / 13$
$=24 / 169$

Tutorial, December 12, 2000

Z-Score

\bar{Z}-score - the standardized score which places a variable in relationship of the $/ \mathrm{x}$ of group - Z-score tells us the distance from the average in terms of SD
-Useful when comparing 2 different distributions i.e. marks of 2 classes

Formula

$\mathrm{Z}_{\mathrm{xi}}=\mathrm{X}-/ \mathrm{X}$
SD
\rightarrow to compare 2 diff. distributions or a person and a dis

Intro to psych	Intro to statistics
$/ \mathrm{x}=85$	$/ \mathrm{X}=88$
$\mathrm{SD}=6$	$\mathrm{SD}=4$
$\mathrm{Xi}=86$	$\mathrm{Xi}=88$
$\mathrm{Z}_{\mathrm{xi}}=\frac{86-85}{6} \quad=1 / 6$	$\mathrm{Z}_{\mathrm{xi}}=\frac{88-88}{4} \quad=0$
Even though 88 is more than 86,86 has a higher z -score	

Times when Z-score is useful

2 distributions are w / I the same scale, but different / x or distribution
Difference of measure: length vs. color

2 Aspects of Z-Score

1) Absolute size of Z-score [how far from $/ x$]
2) What sign does Z-score have (+ or -)

- When $\mathrm{Z}>0 \rightarrow \mathrm{Xi}>/ \mathrm{X}$
- When $\mathrm{Z}<0 \rightarrow \mathrm{Xi}</ \mathrm{X}$
- When $\mathrm{Z}=0 \rightarrow \mathrm{Xi}=/ \mathrm{X}$
-When we convert all the scores (variables) into SD, it b/c a normative distribution
The average of the Z -score $=/ \mathrm{Z}$
$\mathrm{S}_{\mathrm{z}}=1$
$\mathrm{S}_{\mathrm{z}}{ }^{2}=1$

Aspects of normative distribution

1) Has bell shape
2) The distribution is symmetrical $\rightarrow / \mathrm{x}=\mathrm{md}=\mathrm{mo} \rightarrow$ Are all in middle of chart
3) The area within the chart $=1$ or 100%
4) Theoretically, $-\infty=+\infty$
5) Normal distribution has 2 parameters

- $\mu=/ \mathrm{z}$ of population
$-\sigma$ - SD of population
-only has + values \rightarrow doesn't have negative values
-various normative distribution charts differ from each other in sd / σ or both

6) It is standard to change the variables into SD and therefore it becomes a normative distribution chart
7) In normative chart area is \% allotted to that frequency of variables

SD	Area
± 1	34%
± 2	13.59%
± 3	2%

Example
$/ \mathrm{z}=100$
$\mathrm{SD}=10$
$\mathrm{Xi}=115$
$\mathrm{Z}=\frac{\mathrm{X}-/ \mathrm{X}}{\mathrm{SD}}$
$\mathrm{Z}=\frac{115-100}{10}$
$=15 / 10$
$=1.5$
\rightarrow look at chart: 0.433

$50 \%+43.3 \%=93.3 \%$

Example of Z score:

20,000 sign up for uni. 2000 get accepted
the $/ \mathrm{x}$ of all the students $=81$
SD=5
10% get accepted \rightarrow look up in chart: 40% (those above average who didn't get accepted)
$=1.28$
$1.28=\frac{\mathrm{Xi}-/ \mathrm{X}}{\mathrm{SD}}$

5X1.28=Xi-81
5.4=Xi-81
$81+6.4=\mathrm{Xi}$
$\mathrm{Xi}=87.4$
Minimum acceptance \% is 87.4

Probability

Sample space $=\mathrm{S}=$ the group of $\underline{A L L}$ the possibilities of the experiment
Event - a subgroup of the sample/population
-Event's symbol = a capital letter. I.e. A

- if I want a specific outcome to happen =A
- If it did not happen [all other possibilities] =/A

Sure event

-an event that will inevitably happen
\rightarrow i.e. during birth, it is a sure event that it will be a baby

Probability

$-\mathrm{a} \# \mathrm{~b} / \mathrm{w} 0$ and 1 , which is related to each event within a sample space

$$
\rightarrow \text { probability is not a function of } \% \text { but of a \#!!!! }
$$

-Called P(A)

$$
\text { - } \mathrm{P}(\mathrm{~A})>0
$$

Rules of probability

Rule \#1
Probability of a sure event $=1$
Rule \#2
$\mathrm{P}(/ \mathrm{A})=1-\mathrm{P}(\mathrm{A})$
$=$ sum of probability of all other possibilities $=1$-the probability of that one event

Rule \#3

Formula for probability

-With a sample w/ a uniform probability, the probability is its relative occurrence within a sample
$\mathrm{P}(\mathrm{A})=\underline{\mathrm{n}(\mathrm{A})}$
N(S)

Example

$-\underline{\mathrm{n}(\mathrm{A})} \rightarrow$ \# of kings in a deck
$-\mathrm{N}(\mathrm{S}) \rightarrow \#$ of cards

Union

What are the chance of 2 events happening
\rightarrow what are the chances of A and/or B to happen

Formula

P

Tutorial, Jan 9, 2001
$\mathrm{P}(\mathrm{r}, \mathrm{n}, \mathrm{p})=\mathrm{c}(\mathrm{n}, \mathrm{r}) \mathrm{P}^{\mathrm{r}} \times \mathrm{q}^{\mathrm{n}-\mathrm{r}}$
Combination formula $[\mathrm{C}(\mathrm{n}, \mathrm{r})]=$
$\frac{\mathrm{N}!}{\mathrm{R}!(\mathrm{n}-\mathrm{r})!}$

Expectancy

Way to compare a range of answers into a binomial
$€$ - expectancy
-->helps us find the average
$/ \mathrm{x}=\sum \mathrm{p}(\mathrm{Xi}) \mathrm{xXi}$

For Binomial

$\epsilon(x)=n p$

Example of expectancy:

Probability of car working on a morning $=0.6$

1) What is the probability that on every day of the week, his car will not work?
2) What is the estimated times in a year that his car will work?
[^0]
Rule \#1

When N is bigger than 10 , and the bigger it is, the closer the distribution is to binomial distribution

Rule \#2

The closer p / q are closer to 0.5 , the closer to being normative the distribution is.
Binomial distribution: a distribution looking like a normative distribution. But the distribution can't be normal if variable are discrete!!! But is can be similar to one.

$$
\mathrm{M}=\mathrm{C}=\mathrm{np}
$$

Example of a binomial distribution

$Z=\frac{\mathrm{Xi}-\mu(/ \mathrm{x})}{\sigma(\mathrm{sd})}$

Example:

Out of 100 kids, finding 60 boys
$\mathrm{P}=0.5$
$\mathrm{Q}=0.5$
100 !
$60!(100-60)!\mathrm{X}(0.5)^{60} \mathrm{X}(0.5)^{100-40}$

Large Binomial R's

When there is a large range of R's, binomial is too painstaking.
\rightarrow compare it to normative distribution
$\underline{2}$ criteria to make binomial similar to normative distribution

1) $P \approx 1 / 2$
2)

- $\mathrm{NP}>10$
- $\mathrm{NQ}>10$

Average:	Standard deviation NP
$\mathrm{SD}=\sqrt{ } \mathrm{NPQ}$	

Formula:

- Find average
- Find SD
- Plug into z-score
- Find \%'s in chart

Example

Question:

- 40 matches in a box.
-chances the match is broken: $2 / 5$
-what are the chances that in a box of $40 \mathrm{~m} 20-25$ are broken?

Answer

Givens	
$\mathrm{N}=40$	
$\mathrm{P}=0.4$	
$\mathrm{R}=20-25$	
Average	$\underline{S D}$
$/ \mathrm{X}=\mathrm{np}$	$\checkmark \mathrm{NPQ}$
$/ \mathrm{x}=40 \mathrm{x} 0.4$	$=\sqrt{ } 40 \times 0.4 \times 0.6$
/x=16	$=\sqrt{16 x} 0.6$
	$=2.098$
Z-score for top of the	Z-score for bottom of
range	the range
$\mathrm{Z}=25-16 / 3.1$	$\mathrm{Z}=25-16 / 3.1$
$\mathrm{Z}=2.9$	$\mathrm{Z}=1.29$
=49.81\%	=40.15\%
Final Answer	
49.81\%-40.15\%=9.66	

N!A!B!C!

In cases when the question is not the chances of an order (n) but merely order of n, given the grouping of categories

Class, Jan 8, 2001

Positive correlation: When X goes up, y goes up
Negative correlation: When X goes up, Y goes down
No correlation: no connection $\mathrm{b} / \mathrm{w} \mathrm{X}$ and Y

Class Jan 15, 20001

Range of correlation: $-1 \leq \mathrm{R} \leq 1$

Formula for correlation

$\mathrm{R}=\sum(\mathrm{x}-\mathrm{x})(\mathrm{y}-/ \mathrm{y})$ $\sqrt{\sum(x-/ x)^{2} \sum(y-/ y)^{2}}$

Other way to say it:

Covariance (x, y) $S^{2} \mathrm{XS}^{2} \mathrm{y}$
*Note: correlation does not define causation

Example

Step 1

	\mathbf{X} (high school mark)	$\underline{\mathbf{Y}}$
	8	600
	9	700
	10	800
\mathbf{X}	9	700

Step 2

-put into (x-/x)

$\begin{aligned} & \mathrm{X} \\ & \underline{\text { (high school mark) }} \\ & \hline \end{aligned}$		$\begin{aligned} & \underline{Y} \\ & \text { (SAT Scores) } \\ & \hline \end{aligned}$	
8-9	$=-1$	600-700	$=-100$
9-9	$=0$	700-700	$=0$
10-9	$=1$	800-700	$=100$

Step 3
$\mathrm{R}=\underline{\sum(\mathrm{x}-\mathrm{x})(\mathrm{y}-/ \mathrm{y})}$

$$
\sqrt{ } \Sigma(\mathrm{x}-/ \mathrm{x}) \Sigma(\mathrm{y}-/ \mathrm{y})
$$

$$
\mathrm{R}=\frac{(-1)(-100)+0+1(100)}{\sqrt{\left(-1^{2}+0+1^{2}\right) \times(-100)^{2}+0+(100)^{2}}}
$$

$\mathrm{R}=\underline{100+100}$
200
$\mathrm{R}=1$
Answer
Correlation is 1

Example

If $\mathrm{r}=0.5, \mathrm{R}^{2}=0.25$

Tutorial, Jan 17, 2001

Correlations

-how 2 variables affect each other
-i.e. relation b / w success and fear on a test.

1) Range of correlation: $=\boldsymbol{R}$

$=-1 \leq R \leq 1$
2) Signs of correlation:

1) + -positive relationship b / w the variables
\rightarrow (if x goes up, so does Y ; if C goes down, so does Y
2)- -negative relationship b / w variables
\rightarrow if x goes up, Y goes down. If Y goes up, Y goes down
2) 0 -no linear relationship

curvilinear:

-a curve correlation
-i.e. at first, anxiety helps one succeed at a test.
\rightarrow too much or too little will affect the test results negatively

3) Value of correlation

-the bigger the absolute value of correlation is, the more significant the correlation is
3) The fact that a correlation is present does not dictate causation

Pearson correlation -for interval/ratio
Spearman correlation -for ordinal/interval scales
Pie correlation-for Nominal (not relevant for us)

Pearson correlation

2 conditions:

-for interval or ratio scales
-for a linear correlation $\mathrm{b} / \mathrm{w} 2$ variables

$r=\underline{N \sum X Y-\sum X \sum Y}$

$\left[\mathrm{N} \sum \mathrm{X}^{2}-\left(\sum \mathrm{N}\right)^{2}\right]\left[\mathrm{N} \sum \mathrm{X}^{2}-\left(\sum \mathrm{Y}^{2}\right]\right.$

Example -see handout, January 16

-correlation b / w father/son

1) linear transformation of variables does not change the correlation b / w them \rightarrow i.e. adding/multiplying by a constant
2) Pearson correlation: interval and onwards.
\rightarrow but can't compare the correlations: 0.2 is not $1 / 2$ of 0.4

Covariables

$\mathrm{R}=\sum(\mathrm{x}-/ \mathrm{x})(\mathrm{y}-/ \mathrm{y})$
$=\operatorname{cov}(\mathrm{x}, \mathrm{y})$
$\mathrm{r}=$ coeffiecient
\rightarrow how well (correlation) the 2 variables go together go together

Spearman

-Good for ordeal or interval correlations
$\mathrm{R}_{\mathrm{s}}=1-6 \sum \mathrm{~d}^{2}$
$\mathrm{N}\left(\mathrm{n}^{2}-1\right)$
$\mathrm{D}=$ difference in the rank x and y , where each one variable represents a different placement w/I the order of variables

Example of Spearman

-Beauty contest - 4 women were ranked for beauty

Contestant	Judge 1's ranking	Judge 2's ranking	D (diff in ranking)
A	3	2	1
B	1	1	0
C	2	3	-1
D	4	4	0

$1-6(2)$
60
$=1-12 / 60$

1-0.2
$=0.9$
Note: answer of spearman = difference in judges answer $-->D^{2}=0=$ the judges ranked same
-see handout -jan 16, 2001
Class, Jan 22, 2001
Variance: $=$ how diff. from the mean they are $=$ spread out
\mathbf{R}^{2}
$\begin{array}{lcc}\overline{\mathrm{R}} \\ \mathrm{Y}-/ \mathrm{Y}) & =\left(\mathrm{Y}^{\mid}-\mathrm{Y}_{\mathrm{p}}\right) \\ \downarrow & \underset{\mathrm{p}}{ } & \left(\mathrm{Y}_{\mathrm{p}}-/ \mathrm{Y}\right) \\ \mathrm{A} & \mathrm{D} & \mathrm{B} \\ \mathrm{C}\end{array}$
$\mathrm{Y}_{\mathrm{p}}=$ probability of Y
$\underline{\mathbf{A}}=$ difference b / w variable and average $\rightarrow(\mathrm{x}-/ \mathrm{x})$ or $\mathrm{B}+\mathrm{C}$
$\underline{\mathbf{B}}=$ difference $\mathrm{b} / \mathrm{w} \mathrm{Xi}$ and the correlation/regression line
$\underline{\mathbf{C}}=$ difference b / w regression line and average
Explained variance- the variance from the average that you can account for i.e. $\mathrm{b} / \mathrm{c} /$ of socioeconomic level/education/genes

Important: the closer to the line you are $=$ more explained variance
\rightarrow bigger variance from $/ \mathrm{x} \rightarrow$ less explained variance

Regression

-given that a correlation was established, I can try to figure out 1 variable, once the other
variable is given.
$\mathrm{X}=$ the predictor
$\mathrm{Y}=$ the predicted

2 conditions for regressions

-The total sum of distances of all variables to the average (the line running through the correlation graph) $=0$
-the total sum squared of the variables are minimal

Regression line

-the name of that line running through the correlation
\rightarrow represents correlation
-if all variables (dots) are exactly on the line, the correlation is 1
-the line represents the ideal - the correlation of1.
\rightarrow deviations from this line is the correlation
-smaller distances b / w variables and line:
\rightarrow Better predictions
\rightarrow Bigger correlation
$Y^{\mid}=$the predicted y

Formula for line in the regression

$\mathrm{Y}=\mathrm{a}+\mathrm{bx}$
(note: for practical reasons, the a and the b have been changed from the original formula for lines $-\mathrm{y}=\mathrm{ax}+\mathrm{b}$)

Variables

$\mathrm{A}=$ the point in which the line hits the y .
$B=$ regression coefficient - the slope of the correlation chart
Note: the b's sign (+ or -) is always indicative of the correlation's sign

Formulas needed for regression

$$
\overline{\mathrm{B}=\frac{(\mathrm{Xi}-/ \mathrm{X})(\mathrm{Y}-/ \mathrm{Y})}{\Sigma(\mathrm{Xi}-/ \mathrm{X})}}
$$

$b=\underline{\operatorname{cov}(x, y)}$
$S^{2} \mathrm{X}$
$B=R \times \underline{S Y}$
SX
$A=/ y-b / x$

To find a:

$\mathrm{A}=/ \mathrm{Y}-\mathrm{b} / \mathrm{X}$
\rightarrow (average of all the Y's minus b timers average of all the X's

Exercise

Given info

- BA marks $(\mathrm{y})=/ \mathrm{y}=90$
- $\mathrm{SAT}=/ \mathrm{X}=100$
- $\mathrm{R}=+0.8$
- $\mathrm{B}=0.68$
-A $=/ \mathrm{y}-\mathrm{b} / \mathrm{x}$
$-\mathrm{A}=90-0.68 \times 100$
$-\mathrm{A}=90-68$
$-A=22$

Note: the diff. b/w slope and correlation

Plugging in the answer into usage

$Y^{-}=a+b x$
$Y^{\mid}=22+0.68 \mathrm{X}$
$\rightarrow \mathrm{X}$ is the specific variable.

Example:

If a person's high school mark (x) is 98 . what is his predicted mark in his BA (y)

- plug into $\mathrm{Y}^{-}=\mathrm{a}+\mathrm{bx}$
$\mathrm{Y}^{\mid}=22+0.68 \mathrm{X}$
$\mathrm{Y}^{\mid}=22+0.68(98)$
\rightarrow Therefore, his predicted mark is 88.64
$\mathrm{R}^{2}=\mathrm{Sy}^{1} / \mathrm{Sy}=\Sigma\left(\mathrm{y}^{1}-/ \mathrm{y}\right)^{2}$
\rightarrow incomplete?

Standard error of estimate (of the prediction) \rightarrow after the fact
-Standard deviation of the line
\rightarrow how far the individual variables are from the line
To find standard deviation of a line
Syx $==$ sd of a line $x y$
$S x y=S Y x \sqrt{1}-r^{2}$
$\mathrm{R}=$ correlation

Example \#1

If $\mathrm{r}=1$
$S x y=S Y$ x $\sqrt{ } 1-1^{2}$
Sxy=0 \rightarrow perfect correlation - no error of estimate.

Example \#2

If $\mathrm{r}=0 \rightarrow$ no correlation
$S x y=S Y \times \sqrt{ } 1-0^{2}$
Sxy=Sy
\rightarrow prob! = no prediction! The of the distribution from the mean of the variable is equal to the total distributions of all the variables from the mean

Radar

Decision theory

-relation b / w the truth and what is reported

	Truth:	
Reported:	Plane	bird
Bird	X (not good)	$\sqrt{ }$
Plane	$\sqrt{ }$	$\mathrm{X}(?)$

When comparing 2 normative distributions:

- if only 5% of group 1 place w / I range of group 2 , it could be said that 'they are better/more'.
- If more than 5% of group 1 is w / I group 2 , it is assumed that the difference is not sharp enough to assume that group 2 is more/better than group 1
-this 5% is called the 'critical value'
-‘Omdam’ -estimate
-'bilti-mut'e' -no biases to either side \rightarrow always in the middle.
-sample's average is a form of unbiased estimate of the population's average
\rightarrow Sampling error $=$ the errors that sometimes occur $\mathrm{w} /$ the diff. $\mathrm{b} / \mathrm{w} / \mathrm{x}$ (sample average) and population average (μ)
-b/c of sampling error, we can't solely rely on it. We need to make a distribution of all /x of all the samples.
\rightarrow called sampling distribution?

Sampling distribution

Note: in sampling distribution, SD is called Standard Error. (SE)

Conditions:

- population is normal
- sample is over 30 or 100
- etc.?

Results:

- average of sample distribution is μ
- Standard error: $\sigma / \sqrt{ } n$
--

2 kinds of errors

Alpha (a) error-error related to sample: I chose the smarter student/not enough students samples \rightarrow up to a 5% error.

- deals $w /$ the right skew of group 1
- Alpha: I say that there is a difference $w /$ in reality, there is no difference

Beta (β) Error- when, because of the 5% technicality, I declare that group 2 is really not really more better than group 1 , when it really is better.

- deals $w /$ the left skew of group 2
- saying that there is no difference when there really is a difference

Tutorial; Feb. 27, 2001

General distribution:

1) Explained differentiation $\rightarrow \mathrm{r}^{2} \rightarrow$ the correlation b / w the dep. and indp. variables
2) unexplained differentiation. \rightarrow the $\#$ in the dep. variable that is diff. from the prediction made by the indp. Variable - $1-\mathrm{r}^{2}$

- Unexplained differentiation-difference b / w predicted (regression line) and actual value of variable
$\mathrm{R}^{2}=$ explained variance

Conclusive statistics - trying to apply a conclusion made about a sample of the population on the general population.

Measures:

Statistic - a measure relating to a sample of a population
\rightarrow slightly diff, according to which sample we use
Parameters -a measure relating to ALL the population
\rightarrow always constant w/I a group

2 things we want to do:

- Estimate of parameter from sample
- Finding the parameter, using the statistics, when you have an hypothesis.

Distribution of the sample

-the distribution of a mean \rightarrow a distribution of all the means within a certain range for n.s -a theoretical distribution
parameter mean $=102.6=\mu$
$\mathrm{SD}=13.29=\sigma$

Formula

$\mu-\sigma=$ sampling error

Standard error of distribution

-the SD of an sampling distribution
\rightarrow the diff. b / w sample average and population average
Sampling distribution: a distribution chart we make out of averages of distributions and not variables.

Conditions for sampling distributions to be normative distribution:

1) if the distribution of the population is normative, so is the sampling distribution
2) sample has to be big enough.
-over 100
-after 30, one can say it is 'almost-normative'
3)if you take an infinite \# of samples of the population, the distribution will be normative
\rightarrow has to be one or the other. I.e. even if pop. is not a normative distribution, the averages roughly are

Central border axiom

-if you take all the samples from the population and figure out their average, the closer you get to all the population (i.e. the bigger the sample is):

- The sample distribution will b/c increasingly normative.
- average $=\mu$ of population
- SD of this distribution: σ (sd of population) $/ V_{n}$

Formula

$\sigma / \mathrm{x}=\sigma / \sqrt{n}$

Example

$\mu=170$
$\sigma=20$
$\mathrm{n}=25$
$\sigma / \mathrm{x}=\sigma / \sqrt{\mathrm{n}}$
20/ $\sqrt{ } 25$
$20 / 5=4$

4=the SD of this sample distribution
-if n of population is 100 , and we want to figure it out:
$\sigma / \mathrm{x}=\sigma / \sqrt{n}=$
20/ $\sqrt{ } 100$
$20 / 10=2$
SD of population: 2
-the larger N is, the smaller the SD is.

Question:

Does my sample / x reflect the average of all the population, or is there a small diff, based on sampling error?

Answer: we need to go through some statistical manipulation

Example:

Population SAT $(\mu)=500$
SAT course alumni $/ \mathrm{x}=670$

Question:

Is the alumni average reflective of the course, or is it just simply a sampling error spin-off of the population?

Stages:

Stage 1
Statistical hypothesis
\rightarrow says some estimation of a parameter of a population (as opposed to as sample)
$\rightarrow 2$ opposing phrases, opposing each other, where we have to see which one is true or not.
\rightarrow i.e. is 1 really different/better than 2 or not?

- $\mathrm{H}_{0} \rightarrow$ a known/accepted fact \rightarrow we assume that unless proven otherwise, we assume everyone is equal. $/ \mathrm{x} \leq \mu$
- $\mathrm{H}_{1} \rightarrow$ usually the 'claim' \rightarrow the 'chidush' that the examiner is trying to prove $-/ x>\mu$
\rightarrow we only measure $\mathrm{H} 0 \rightarrow$ if it is not correct, we assume H 1 is correct.
1-ended (tailed) hypothesis: I assume 1thing will happen
2-ended (tailed) hypothesis: either this or than could happen $\rightarrow I$ am not sure of the results
-the average (/x) of the people of that saw movie x is diff from population's average (μ)

2 ended either $/ \mathrm{x}=\mu$

```
or /x\not=\mu
```


Stage 2

-collecting/checking empirical/statistical facts
\rightarrow this is where you go an gather info (and actually get the averages for the samples/population
\rightarrow we will see how big the diff. b/w populations/samples

Stage 3

What is the probability (p) to get the result of stage \#2 randomly?
\rightarrow what are the chances that the samples of stage \#2 are random?
\rightarrow is 670 a sampling error or really reflective of its population?
\rightarrow figure out z-score.
-if z-score $\%$ is small, then the likelihood for this to be random is smaller.

Stage 4

-so we refute H 0 ?
\rightarrow alpha: the amount of risk I am willing to take.
\rightarrow defined by researcher b/f study
\rightarrow standard in psychology $=5 \%$ answer to the z-score.

Tutorial march 13, 2001

-all conclusions in psychology are based on probability

Reality \rightarrow	$\mathbf{H}_{\mathbf{0}}$	$\mathbf{H}_{\mathbf{1}}$
Researcher's hypothesis:	Hit	Alpha mistake =we refute H_{0} even though it is in reality correct - Researcher claims that H_{1} is better, even though it really isn't
$\boldsymbol{H}_{\boldsymbol{0}}$ is correct	Hit	
$\boldsymbol{H}_{\boldsymbol{1}}$ is correct	Beta mistake =we refute H_{1} even though it is in reality correct	-beta/ H_{0} is correct
\rightarrow Researcher claims that H_{1}		
is really a slightly extreme		
sample of the H_{0}		
population, even though in		

	reality, H_{1} is a sample from a different/better population	

-all the area except alpha (5\%)
\rightarrow when we refute $\mathrm{H}_{0} \rightarrow$ we have a chance for an alpha mistake

\underline{H}_{1}

-all area in the distribution of the sample except beta (the 5% of this sample that are w/I alpha area)
\rightarrow when we refute $\mathrm{H}_{1} \rightarrow$ we have a chance for a beta mistake

Alpha:

2 approaches: -if I got 1\%

1) 5% chance to make a mistake, since that is the range that we are looking at
2) 1% chance to make a mistake, because that is where my result is

What characterized alpha/beta?

Alpha

Is decided by researcher b / f the research paper

Beta

Has 3 factors:

1)Size of gap $\mathrm{b} / \mathrm{h} \mathrm{H} 1 / \mathrm{H} 0$

- the more overlap $=$ less gap \rightarrow more chances for bigger beta mistake
- less overlap $=$ more gap \rightarrow less chances for bigger beta mistake

To see the gap:

- Averages of the distributions
- The standard error of sample

$$
\begin{aligned}
& \circ \sigma / \mathrm{x}=\sigma / \sqrt{n}= \\
& \rightarrow \text { also influenced by \# of participants in sample } \\
& \rightarrow \text { bigger } \mathrm{n}=\text { SD is smaller } \rightarrow \text { beta is smaller } \\
& \rightarrow \text { bigger }=\text { bigger SD } \rightarrow \text { beta is bigger }
\end{aligned}
$$

2)There is a reverse b / w alpha and beta
\rightarrow alpha is bigger \rightarrow beta is smaller
3)power of the test

1-beta
$\underline{\boldsymbol{Z} \text {-Test }}$-the formula to see if the group is better/worse than the population \rightarrow i.e. where they land in relationship to each-other
$Z=\underline{x-\mu}$
σ / \sqrt{n}
\rightarrow for sample compared to a population
As opposed to:
$Z_{x i}=\underline{X}-/ X$
SD
\rightarrow to compare 2 diff. distributions or a person and a dis

```
Example
/x=105
n=100
\sigma=15
Z = / x-\mu
105-100
15/\sqrt{}{100}
=
5
15/10
=5/1.5
=3.33333
```

z score $=3.3333 \rightarrow$ look it up in table
\rightarrow if the z score for that is less than 5% [critical point], it is better (in this case, it is)

Standards

-We split up the 5% critical value into 2 (2.5%)
-and put each at one end of the table, since we assume that our group might be better or worse than the general population's normative distribution
\rightarrow so we split up the allotted 5% into 2 and put it at both ends of distribution

Null hypothesis	1 -tailed
$\mathrm{H}_{\mathrm{o}} / \mathrm{X}=\mu$	$\mathrm{H}_{\mathrm{o}} / \mathrm{X} \leq \mu$
$\mathrm{H}_{\mathrm{a}} / \mathrm{X} \neq \mu$	$\mathrm{H}_{\mathrm{a}} / \mathrm{X}>\mu$

```
A=alternative
    -We assume, in null hypothesis that our
    population (/x) is not equal to the
    population ( }\mu\mathrm{ )
    ->better or worse
    \rightarrow \text { if difference in not beyond critical value,}
we say that }\mp@subsup{H}{0}{}\mathrm{ is irrefutable
```


1-tailed -5\% on top end of distribution

$\underline{2-\text { tailed }}-2.5 \%$ on each side

Pros and cons

2-tailed system:

Pros

-we will account for all the possible results of the comparison
\rightarrow i.e. whether H_{1} is better or worse than H_{0}

Cons

-if I get 3\% for the better \rightarrow I will statistically never have found out it is better, even though it is

1-tailed system

Pros:

-you have rational/clear direction on what direction that the hypothesis will go

Central Limit/border theorem

-if we take the average of all sample groups taken from any random distribution: the closer we get to infinite @ of samples, the closer we get to normative distribution
\rightarrow called: standard error of the mean

Confidence interval

-when you don't have the mu of the population; you need to look for the m using the Z -
test
$/ \mathrm{X}-1.96 \mathrm{~S}_{\text {/x }} \leq \mu \leq / \mathrm{X}+1.96 \mathrm{~S}_{\mathrm{I}}$
(1.96 = z score for 5\%)
$\mathrm{S}_{/ \mathrm{x}}=\mathrm{s} / \sqrt{ } \mathrm{n}$
Example
$\mathrm{s}=10$
$\mathrm{n}=25$
/x=40

Formula

$\mu=/ \mathrm{X} \pm \mathrm{Zx} \mathrm{S}(\sigma) / \sqrt{n}$
\rightarrow first do it for both + and -
$10 / 5=2$
$=40-1.96$ (2) $\leq \mu \leq 40+1.96$ (2)
$=40-3.92 \leq \mu \leq 40+3.92$
$=36.08 \leq \mu \leq 43.92$

Note:

- More precision: smaller alpha ($1.96 \mathrm{~b} / \mathrm{c}$ bigger) \rightarrow smaller range \rightarrow bigger chance for mistake
- Bigger sample: more $\mathrm{N}=$ smaller range \rightarrow smaller chance for mistake

Power

Power $=1$-beta
-critical point and onwards
\rightarrow power $=$ the probability that I will refute H_{0}
\rightarrow the standard: 80%
\rightarrow the further the $/ \mathrm{x}$'s are from each other, the greater the powers

3 factors in power

1) N -more $\mathrm{N}=$ more power
2) Alpha - the bigger the alpha is, the bigger the power is
-i.e. the higher $\%$ for error (either 1% or 5%), the more chance for a mistake
3) The mean -/x
\rightarrow Significant results: a result w/I alpha \rightarrow we accept H_{0}
\rightarrow Non-significant results: we don't refute H_{0}
\rightarrow sometimes just called ' $N S$ '

T-test

$$
\begin{aligned}
& \mathrm{t}=\frac{/ \mathrm{x}-\mu}{\mathrm{S} / \sqrt{n}} \\
& \rightarrow \\
& \rightarrow \text { similar to Z-test } \\
& \quad \rightarrow \mathrm{S} \text { instead of } \sigma /
\end{aligned}
$$

Note: S in T-score means something else

The difference $\mathbf{b} / \mathbf{w} \mathbf{T}$ and Z tests:

1) T relates to a sample $/ Z$ related to a population
2) T test doesn't have a SD \rightarrow when you don't know the $S D$, use the T-test
a. B/c you only have the variance of the population, but not the SD of the population b / c you do not know the population

- T used Degrees of freedom
\rightarrow has it's own 'T-score' table
- t average $=0$
- normative distribution
- but flatter/wider than normal distribution
- the more df, the closer it looks like z score
- every df has its own t-score

Degrees of Freedoms

-the number of components that are free to change
-there are n - 1 degrees of freedom
\rightarrow the last variable has to even out the rest in order to make the average the average of the population

- at the end, we've got to look up t score in it's chart
\rightarrow since the book only gives us degrees of freedom in intervals of 10 , we
ALWAYS round down. I.e. 39 gets rounded down to 30 and not to $40!!!$
\rightarrow that gives us the critical point
-once I plug in my values into the formula and get the t-score, I plug it into the T table. I ALWAYS round down - even if It is 0.69 - I round down to 0.60 and not to $0.70!!!$

T-test for one average.

Example question

-it is known that kids help their friends 16 times a week. it is also known that it is a normative distribution

- a researcher estimates that kids involved in learning centers will help their friends in a different way than not
- he sampled 7 kids from learning centers

His results

24
23
22
18
17
16
20

Step 1 -formulating the estimations
$\mathrm{H}_{0}: \mu=16$
$\mathrm{H}_{1}: \mu \neq 16$

Stage 2-Level of certainty and conditions of acceptation

- $\alpha=0.05$
- 2-tailed test
- df
- $=n-1$
- $=7-1$
- $=6$
- $\mathrm{t}= \pm 2.447$
- Area of acceptance $-2.447>t<+2.447$
- Area of refutation $\mathrm{t}<-2.447$ or $\mathrm{t}>+2.447$

Stage 3
$\mathrm{T}_{\text {/x }}=/ \mathrm{X}-\mu_{\mathrm{x}}$
$\sigma_{\frac{\wedge}{\wedge}}^{V_{n}}$
$\wedge_{\mathrm{s}}=\sqrt{ } \frac{\sqrt{ }(\mathrm{Xi}-/ \mathrm{X})^{2}}{\sqrt{\mathrm{n}-1}}$

Variable	$\mathrm{Xi}-/ \mathrm{X}$	$(\mathrm{Xi} / \mathrm{X})^{2}$
24	$24-20=4$	$4^{2}=16$
23	3	9
22	2	4
20	0	0
18	-2	4
17	-3	9
16	-4	16
		$=58$
Average $=\mathbf{2 0}$		

${ }^{\wedge} \mathrm{S}=\sqrt{58 / 19}$
$\mathrm{T}_{\text {/x }}=20-$

tutorial, mar 20, 2001

Mistakes

Alpha -when H_{1} is better, but I don't say so
Beta -I dismiss H_{1} mistakenly $\rightarrow \mathrm{H}_{1}$ is really better.
Power $1=$ beta -probability that H_{1} is correct
$\underline{Z}_{\mathbf{c}}-$ critical Z -also called critical value

Example:

-average of 1 years old kids $=100$ words
$-\mathrm{SD}=18$
$\mu=100$
$\sigma=18$
-researcher claims that speaking to kid in-uterus increases vocabulary

Experiment result

$\mathrm{N}=81$
-at age $3=/ x=105$
5) what are the chances for a mistake

2 tailed mistake

-almost the same as 1 tailed
-uses same \# as b/f

1) $\mathrm{H}_{0}=\mathrm{H}_{1} \rightarrow$ as opposed to either equal or $>$ in 1 tailed
2) $\mathrm{H}_{0}=\mathrm{H}_{1} \rightarrow \operatorname{not} \mathrm{H}_{0}<\mathrm{H}_{1}$
\rightarrow we need Z_{c} for this
H_{0} acceptance rate: $-1.96 \leq \mathrm{Z} \geq 1.96$
H_{1} acceptance rate: $-1.96 \geq \mathrm{Z} \leq 1.96$

Formula

$\mathrm{Z}_{/ \mathrm{x}}=\underline{\mathrm{X}^{-}-\left(\mu_{\underline{x}}\right.}$
$S_{/ x}=($ SD of a sample $)=\sigma / \sqrt{ } n$
\rightarrow formula is the same as b / c
-in our case, it is the same as $\mathrm{b} / \mathrm{f}=2.5$
\rightarrow we still refute H_{0}

Stages/process of experiment

1) wording of hypothesis:
$\mathrm{H}_{1}=$ knew more $(\mu</ \mathrm{x})$
$\mathrm{H}_{0}=$ babies didn't know more $\left(\mu>/ \mathrm{H}_{0}\right)$
2) establishing the level of certainty
$\underline{\text { Standard }}=$ Alpha $=0.05$-unless otherwise states
-->in this case, it is 1 -tailed
$\underline{\mathbf{Z}}_{\mathrm{c}}=$ critical Z
-the point that divides H_{0} into 2 sides -->the line that alpha represents
-->by looking up alpha \% in the z-score chart

- In 1 tailed $=1$ critical Z
- In 2-tailed $=2$ critical Z
- In 2-tailed - they are equal in size, but opposite signs

Results

- higher than z score $=\mathrm{H}_{0}$ is refuted
- lower than z -score $=\mathrm{H}_{0}$ is accepted

Note: in all of this process, H_{0} is refuted or accepted
-->not H_{1}

Statistical computation

Formula

$\mathrm{Z}_{\mathrm{lx}}=\frac{/ \mathrm{x}-\mu_{/ \mathrm{x}}}{\sigma_{\mathrm{x}}}$

$$
\frac{105-100}{\sigma / \sqrt{n}}
$$

105-100
$18 / \sqrt{ } 81$
105-100
2
$=5 / 2$
$=2.5$
3) conclusion
i.e. is H_{0} refuted or not>
$2.5>1.9$
--> H_{0} is refuted

- also, write out in full the conclusion

Class-Mar 262001

T-tests
-in reality, you do not know SD of a population/sample that you're experimenting. That is why you need to estimate it. This is called \boldsymbol{S}

T test factors

Assumptions

1) Normative distribution
2) $\mathrm{N} 1=\mathrm{N} 2(2$ groups are the same N$)$
3) Homoskedacity $\mathrm{S}_{1}{ }^{2}=\mathrm{S}_{2}{ }^{2}$
\rightarrow see down for details

2 kinds of T-Tests

T tests for:

1) dependant tests
2) independent tests

Dependant

$\frac{\text { Independent }}{* *}$

i.e. comparing:

- Where I live [city vs. village] (independent)
- Intelligence
$\rightarrow \mathrm{I}$ find that City IQ is 103 and village IQ is 102
The question reminds: since the diff. is so small, can I assume that they are the same population, or does this, seemingly insignificant diff. really make them a diff. population?

2 independent tests

-i.e. is teaching statistics class on Monday better than Tuesday (or vice versa)?

In this test:

$\mathrm{H}_{1}=$

- $\mu_{1}=\mu_{2}$
- $\mu_{1}-\mu_{2}=0$

This formula getps you $S 2$ from the two s's (of the two independent samples/tests

$\mathrm{S}^{2}=\underline{S}_{1}{ }^{2}(\mathrm{~N}-1)+\mathrm{S}_{2}^{2}(\mathrm{~N}-1)$

$\mathrm{N}_{1}+\mathrm{N}_{2}-2$

Matched tests

- When you want to match 2 similar groups, except 1 criteria
- Examples:
- before/after.
- Smokers in one neighborhood [w/ same history] vs. non smokers in that neighborhood w/ that same history]

T-test Formula

$\mathrm{T}=/ \mathrm{D} / \mathrm{S}_{/ \mathrm{d}}$
-D =difference

Reminder: $/ \mathrm{D}=\Sigma \mathrm{d} / \mathrm{N}$
Formula to find S_{d}
$\mathrm{S}_{/ \mathrm{d}}=\sqrt{ } \sum(\mathrm{D}-/ \mathrm{D})^{2}$
$\sqrt{ } \mathrm{N}-1$
Example

Before	After	Difference	$(\boldsymbol{D}-/ \boldsymbol{D})^{2}\left(\right.$ for the $\left.\mathrm{S}_{\text {/ }}\right)$
8	7	+1	$\left(+1-(-1)^{2}=4\right.$
9	10	-1	$\left(-1-(-1)^{2}=0\right.$
8	8	0	$(0+1)^{2}$
6	10	+4	$\left(-4-(-1)^{2}=9\right.$

$\mathrm{T}=/ \mathrm{D} / \mathrm{S}_{/ \mathrm{d}}$
$/ \mathrm{D}=-1$
$\mathrm{S}_{\mathrm{d}}=\mathrm{S}_{\mathrm{d}} / V_{\mathrm{n}}$

Formula to find S_{d}
$\mathrm{S}_{\mathrm{d}}=\sqrt{ } \underline{\underline{(D}-/ \mathrm{D})^{2}}$
$\sqrt{ } \mathrm{N}-1$
$=\sqrt{ } 14 / 4-1$
$=\sqrt{ } 14 / 3$

To check homoskedasity: [see top for t-test conditions] $\mathrm{F}=\mathrm{S}_{1}{ }^{2} / \mathrm{S}_{2}{ }^{2}$

Important: the higher S is always on top!!!!
-the answer is looked up in the F chart. The top \# is for 1% the bottom is for 5%.
[Homoskedacity $\mathrm{S}_{1}{ }^{2}=\mathrm{S}_{2}{ }^{2}$]

Tutorial -mar 27, 2001

- The averages of the all the sampling combinations' averages gives us the actual average (μ)
\rightarrow not so for the SD \rightarrow can't find it from sampling \rightarrow need a formula
\rightarrow confidence interval - to know μ (average of population \rightarrow I can take 1 sample and define a certain range around which μ is likely to fall, to a certain percentage (usually 95\%)
- chances to be right: 1-alpha

Formula

$-\mathrm{p}\left\{\mathrm{L}_{1} \leq 0 \leq \mathrm{L}_{2}\right\}=1$-alpha
$\mathrm{L}=$ limits of confidence

- usually, we say that the confidence level is 95%
o we say that we are 95% sure that μ is w/I this limit
-when the distribution is taller/wider \rightarrow diff. placing of the confidence interval
$\mathrm{S}_{/ \mathrm{x}}=\sigma / V_{\mathrm{n}}$
Z alpha/2=1.96

```
Example:
/x =1500
n=400
\sigma=300
Alpha =0.05
Alpha/2 =0.025
```


Formula

$/ \mathrm{X}-\mathrm{Z}(\mathrm{Alpha} / 2)[1.96] \sigma / \mathrm{Vn}_{\mathrm{n}}\left[\mathrm{S}_{/ \mathrm{x}}\right] \leq \mu \leq / \mathrm{X}+1.96 \mathrm{~S}_{/ \mathrm{x}}$ ($1.96=$ z score for $5 \% / 2$)
$\mathrm{S}_{\mathrm{x}}=\mathrm{s} / \sqrt{ } \mathrm{n}$
$\{1500-1.96 \times 300 / 20 \leq \mu \leq 1500-1.96 \times 300 / 20\}=95 \%$

Example:

$/ x=115$
$\mathrm{n}=400$
$\sigma=15$
Alpha $=0.01 \mathrm{~h}$
Alpha/ $2=0.005 \rightarrow 2.58$

Note:

- the bigger the sample is, for the same confidence interval (say, 95%), will b/c smaller

Example

Case We know the range of confidence, but we don't know the how big the sample has to be. \rightarrow the more people \rightarrow the more sure I am

- sometimes, I want a certain amount of participants, in order to get a specific range
- what n do I need for this?
$/ \mathrm{X}_{1}-/ \mathrm{X}_{2}=40$
$\mathrm{n}=$?
$\sigma=15$
Alpha $=0.01$
Alpha/2 $=0.005 \rightarrow 2.58$

Original Formula

$\mathrm{Z}=\underline{/ \mathrm{x}-\mu}$
σ / \sqrt{n}
-Everything we will
do is a
recombination of
this formula

- now -we have to isolate n to find out what n is

Original Formula

$\mathrm{Z}=\frac{/ \mathrm{x}-\mu}{\sigma / \sqrt{n}}$
$\mathrm{Zx} \sigma / \sqrt{n}=/ \mathrm{x}-\mu$
$/ \mathrm{x}-\mu$ will hence be called $\mathrm{L} / 2[1=$ length of interval. $\mathrm{L} / 2$ is the range of one side of the distribution]

```
\(1 / \sqrt{n}=\mathrm{L} / 2\)
    Zx \(\sigma\)
\(V_{\mathrm{n}}=\underline{\mathrm{Zx} \sigma}\)
        L/2
\(\mathrm{N}=(\underline{\mathrm{Zx} \sigma})^{2}\)
a \(\quad(\mathrm{L} / 2)^{2}\)
```

Dana
6969-517
Prof. Koslowsky -12-1

Tutorial, April 17, 2001

Sample	$\frac{\text { Population }}{}$
$\mathrm{S}^{2}=\frac{\sum(\mathrm{Xi}-/ \mathrm{X})^{2}}{\mathrm{n}-1}$	$\sigma^{2}=\frac{\sum(\mathrm{Xi}-\mu)^{2}}{\mathrm{n}}$
$=\wedge \mathrm{S}^{2}$	

Review of T-test

Independent T-test

-to compare averages of 2 samples that are independent
\rightarrow i.e. 2 people

Example:

-New principal in a school claims that the SAT scores are diff. than the one in a diff.
highschool.
-inspector checked 18 students from the first high school. W/
$S^{2}=290$
/X $=85$
$\mathrm{N}=18$
Other highschool
$\mathrm{N}=12$
$S^{2}=340$
/x=80

Conditions for T-test

- normative distributive
- when we don't know the variance, we use t test. If we do, then we use the z-score
- $/ \mathrm{d}=$ the diff b / w each all the $/ \mathrm{X}_{1}$ and $/ \mathrm{X}_{2}{ }^{\prime}$'s
- that distribution is the distribution of the $/ \mathrm{x}$ of differences.
- If there is no diff, then the $/ \mathrm{x}$ of this distribution is 0

Steps

1) Phrase the hypothesis
a. $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$
b. $H_{1}: \mu_{1} \neq \mu_{2}$
2) Declaring the level of significance:

- Refutation/acceptance level: 0.05%
- 2 tailed test
- $\mathrm{df}=\mathrm{n}_{1}+\mathrm{n}_{2}-2$

3) Statistical computation
$/ \mathrm{X}_{1}-/ \mathrm{X}_{2}$
S/d

Formula to find S_{d}
$\mathrm{S}_{/ \mathrm{d}}=\sqrt{ } \sum_{\text {(} \mathrm{D}-/ \mathrm{D})^{2}}$

T-test Formula

$\mathrm{T}=/ \mathrm{D} / \mathrm{S}_{/ \mathrm{d}}$
-D =difference
Reminder: / $\mathrm{D}=\sum \mathrm{d} / \mathrm{N}$
$\mathrm{t}=\frac{/ \mathrm{X}_{1}-/ \mathrm{X}_{2}}{{ }^{\wedge} \mathrm{S} / \mathrm{D}} \quad=\frac{/ \mathrm{X}_{1}-/ \mathrm{X}_{2}}{\sqrt{\mathrm{~S}^{2}}}+\frac{\underline{S}^{2}}{\sqrt{\mathrm{~N}_{1}}} \frac{\mathrm{~N}_{2}}{\mathrm{~N}_{2}}$
${ }^{\wedge} \mathrm{S} / \mathrm{D}=\quad \sqrt{\sqrt{\mathrm{S}^{2}}}+\frac{\mathrm{S}^{2}}{\mathrm{~N}_{2}}$

To find S^{2} :
$\mathrm{S}^{2}=\underline{S}_{1}^{2} \frac{\mathrm{~S}^{(N-1)}+\mathrm{S}_{2}^{2}}{\mathrm{~N}_{1}+\mathrm{N}_{2}-2}$ (N-1)
4)

85-80
6.76

Dependant T-tests

-a Diff b / w dependant and independent

1) how $/ D$ is computed
2) I use $/ \mathrm{d} \rightarrow$ there is 1 average, since here I am comparing pairs [and therefore, I use $\mathrm{n}-1$]
a. vs. independent t-tests, where we related to all the observed variables (from both groups) but got 2 d averages ($\mathrm{n}-2$)
A. $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$
B. $\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$

Before	After	Difference	$(\boldsymbol{D}-/ \mathbf{D})^{2}\left(\right.$ for the $\left.\mathrm{S}_{/ \mathrm{d}}\right)$
8	7	+1	$\left(+1-(-1)^{2}=4\right.$
9	10	-1	$\left(-1-(-1)^{2}=0\right.$
8	8	0	$(0+1)^{2}$
6	10	+4	$\left(-4-(-1)^{2}=9\right.$

Formula for dependent t-score

$T=/ D / S_{/ d}$
$-\mathrm{D}=$ difference
Reminder: $/ \mathrm{D}=\mathrm{D} \mathrm{d} / \mathrm{N}$
Formula to find $\underline{S}_{\mathbf{d}}$
$\mathrm{S}_{\mathrm{d}}=\sqrt{\sum(\mathrm{D}-/ \mathrm{D})^{2}}$
$\sqrt{ } \mathrm{N}-1$

April 23, 2001

Non-parametrical test:**

\rightarrow when you can't establish a parameter
\rightarrow nominal/ordinal
\rightarrow i.e. chi-square
\rightarrow therefore, you can't use tings like mean in chi-square tests

Chi-square

Chi-square: is the observed (o) diff or similar to the estimated (E) distribution

- defined by the DF
- the larges the DF, the bigger the critical point is (as opposed to T, which is the opposite)
- Unsymmetrical \rightarrow left skew
-but gets closer to symmetrical as it gets larger
- Chi-square us always 1 -tailed (5\%)
- B/c in Chi-square, the chart really shows diff. b/w 2 samples. The more left, the less diff. b / w the 2 samples/population

Chi-square: is the observed (o) diff or similar to the estimated (E) distribution
-If I have a probability and I want to compare it to an actual result
i.e. if I though a coin 100 times; I expect to get 50 head/ 50 tails
\rightarrow if I get 55 heads?
$\chi^{2}=\sum\left(\underline{\mathrm{O}}_{1}-\mathrm{E}_{1}\right)^{2}$
$\mathrm{E}=$ expected
$\mathrm{O}=$ observed
\rightarrow then plug \# into Chi-square \rightarrow the cross-section of DF and the 5% critical threshold
\rightarrow if the answer of the formula is bigger than the critical value (the \# that appears in the cross-section of the DF and the $5 \%) \rightarrow \mathrm{H}_{0}$ is accepted
\rightarrow if answer of formula is smaller than the cross-section, than H_{0} is refuted

Note: in Chi

$\underline{\boldsymbol{D} \boldsymbol{f}}=$ categories -1
\rightarrow as opposed to t, where DF is \# of participants (n) -1
\rightarrow i.e. in dice, there are 6 categories, so the $\mathrm{DF}=5$

Results

$\mathrm{H}_{0} \mathrm{O}=\mathrm{E}$
$\mathrm{H}_{1} \mathrm{O} \neq \mathrm{E}$

Example:

We got 55 heads
$\left.=\sum\left(\underline{\mathrm{O}}_{\underline{i}}-\mathrm{E}_{\mathrm{i}}\right)_{\mathrm{E}_{\mathrm{i}}}\right)^{2}$
$=\frac{(55-50)^{2}}{50}+\frac{(45-50)^{2}}{50}$
$=25 / 50+25 / 50=1$
-look up 1 in the chi-square chart

Example of CHI

In a class, there were 6 men and 20 females.
\rightarrow is this a representative population of the gender split of $50-50 \%$
\rightarrow we expected 13 males $/ 13$ females

Stage $1=$ hypothesis

$\mathrm{H}_{0} \mathrm{e}=\mathrm{o}$
$\mathrm{H}_{1} \mathrm{e} \neq \mathrm{o}$

Stage 2 -Deciding the level of significance/refutation

$-\sigma=0.05$
-The test is 2-tailed but the actual verification is 1-tailed
\rightarrow no point in checking in the left side, since Chi graph merely shows the diff.
\rightarrow the more right, the more diff.

DF $=\mathrm{j}-1=2-1$
$\chi^{2}{ }_{c}=3.84$

- acceptance of $\mathrm{H}_{0} 3.84 \geq \chi^{2}$
- Refutation of $\mathrm{H}_{0}: 3.84<\chi^{2}$

Stage 3

O	E	$(\mathrm{O}-\mathrm{E})^{2}$							
6	13	49							
20	13	49							

$$
\chi_{c}^{2}=\sum\left(\frac{\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2}}{\mathrm{E}_{\mathrm{i}}}\right.
$$

$$
(6-13)^{2}+(20-13)^{2}
$$

$49 / 13+49 / 13=7.54$
\rightarrow check the table

Chi test of independence

-the connection $\mathrm{b} / \mathrm{w} 2$ variables, where at least one of them is in the nominal \rightarrow this test will check if there is a connection b / w the 2 groups
\rightarrow compare the expected and the observed
$\left.\chi_{(j-1)(k-1)}^{2}=\frac{\mathrm{O}_{\underline{i}}-\frac{\mathrm{E}_{\mathrm{i}}}{}}{\mathrm{E}_{\mathrm{i}}}\right)^{2}$

Goodness of fit

-is there a dependence/relationship b / w the 2 variables?
\rightarrow i.e. gender and subject

	Economics	Psychology	Computers	Total
Male	$50(\mathrm{e}=47)$	$40(\mathrm{e}=50)$	$50(\mathrm{e}=33)$	140
Female	$50(\mathrm{e}=53)$	$80(\mathrm{e}=70)$	$30(\mathrm{e}=47)$	160
	Total	100	120	80

\rightarrow I check it through the CHI-square formula
\rightarrow the bigger the gap b / w expected and observed, the more I have to say that they are dependant. If expected $=$ observed, than there are no external factors.

Now the question is: we know the observed, but what is the expected?

Answer:

Total of row times total of column divided by total of all rows/columns
i.e. to find the expected number of male psychology students

140 (total males) X 100 (total psychology students) 300 (total of all)

14000/300
140/3
Expected male psychologist students $=46.667$
-now we want to know if the 2 populations are really diff.
\rightarrow we need to find if it passed the critical value

To get degrees of freedom:

(R-1)(C-1)
$\mathrm{R}=$ \# of rows; $\mathrm{C}=$ columns
\rightarrow then plug in results into the Chi-square formula
\rightarrow then look it up in the chi-square chart (also taking into account the degrees of freedom)

Chi-squared:

- not normative
- chi-square is a frequency [vs. t / z score which is a measure. (has a mean/SD)]

example

-a researcher claims that there is a correlation b / w location of residence and love of the see
-he gets 310 .
-for each participant, he gives the residence options: city/village/kibbutz
\rightarrow the sea options are love/hate

	Loves sea	Hates sea	
City	65	38	
Kibbutz	57	58	
Village	37	55	
Total			310

Stage 1 stating of hypothesis

$\mathrm{H}_{0} \mathrm{e}=\mathrm{o}$
$\mathrm{H}_{1} \mathrm{e} \neq \mathrm{o}$

Stage 2

Df $=(\mathrm{R}-1)(\mathrm{c}-1)$
$3-1 \times 2-1=2$
\rightarrow look up in chart:

- $\mathrm{df}=2$ and 5%
- $\chi^{2}{ }_{c}=5.99$

1) First of all, plug in the totals.
\rightarrow assumption: in both columns and rows: both expected and observed add up to the same total.
2) $\mathrm{E}=\mathrm{RxC} / \mathrm{n}$

	Loves sea	Hates sea	
City	$65(\mathrm{E}=\mathrm{RxC} / n)$ $(\mathrm{E}=159 \mathrm{X} 103 / 310)$ $\mathrm{E}=52.83$	$38(\mathrm{E}=50.17)$	103
Kibbutz	$57(\mathrm{E}=58.9)$	$58(\mathrm{E}=56)$	115
Village	$37(\mathrm{E}=47.1)$	$55(\mathrm{E}=44.8)$	92
Total	159	151	310

Then, plug in the formula:
$\sum \underset{\mathrm{E}_{\mathrm{i}}}{\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2}}$
Answer $=10.26$
\rightarrow look up in chart =we refute $\mathrm{H}_{0}=$ there is a diff.

When you have a 2×2 box (the 2 categories both have 2 components)

-a shortcut formula, though the observed/expected chart seen above could also be used -df is always 1

	C_{1}	C_{2}	
R_{1}	A	B	$\mathrm{~A}+\mathrm{B}$
R_{2}	C	D	$\mathrm{C}+\mathrm{D}$
	$\mathrm{A}+\mathrm{C}$	$\mathrm{B}+\mathrm{D}$	N

$\chi^{2}=n(\mathrm{AD}-\mathrm{BC})$
$(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})(\mathrm{C}+\mathrm{D})(\mathrm{B}+\mathrm{D})$

Example

A researcher claims that there is a diff b / w way of learning A and B

	Success C_{1}	Failure C_{2}	
A	50	10	60

	70	30
$\chi^{2}=100\left(\frac{50 \times 20-20 \times 10}{60 \times 40 \times 30 \times 70}\right.$		100

Goodness of fit

- If there are only 2 categories:
- In the expected, we need at least 10
- Observed \# is irrelevant
- More than 2 categories
- at least 5 in expected

Independent:

- at least 10 in the expected in a 2×2 box
- 5 in the expected in more that a 2×2 box
-when O and E are given in \%, and not in \# of people (frequency) then you multiply the \% by n

F test -

- Levine
- Analysis of variance -(nituach shonut)

F is always a factor
$F=$ variance b / w groups
Variance w/i group

- each of one has a df
- the more df, the more symmetrical the f-distribution looks
- the more df , there are, the critical fb / c smaller
-

\rightarrow opposite to chi-square

- Possible range for $\propto \geq \mathrm{f} \geq 0$
-

-in f chart - 2 numbers - the top \# is for 5% and the bottom is for alpha of 1%
\rightarrow it is always 1 tailed, since this distribution is right-skewed

- I want the numerator (B) to be larger than the denominator $(\mathrm{W}) \rightarrow$ so the diff. b / w populations is bigger than the random ones w / I each population

Questions

What is the diff. b / w Mitgam/Dgima
**

May 6 - Stats makeup class

1 tailed test: when you know where H_{1} is supposed to fall
2-tailed test: when you don't know for sure where H_{1} will fall:

- Meni: you always need 2-tailed, since you need to always have that option open.

T-test to check the certainty of Pearson

-we want to see if r (correlation) is big enough.

Example:

In the whole population, it is known that there is no relationship b / w shoe-size and body weight
\rightarrow an anthropologist claims that in the Zulu tribe, there exists a correlation b/w show-size and weight
\rightarrow he checks a sample of 20 and comes up with a correlation of 0.60 ($\mathrm{r}=0.60$)
\rightarrow now, we want to know if $\mathrm{r}=0.60$ is significant
->so we're going to do a t-test in order to see whether r is significant
$\mathrm{H}_{0}=$ no connection
$\mathrm{H}_{1}=y e s$ connection
Note: here, H_{0} and H_{1} is not a diff. population/sample, but rather a difference in correlation
$\mathrm{N}=20$
$\mathrm{R}=0.60$

Stage 1 -statistical hypothesis

\rightarrow says some estimation of a parameter of a population (as opposed to as sample)
$\ell=$ Roe $=$ parameter (measure of a population) of a population (as opposed to sample statistic)

Roe $=0$
$\mathrm{H}_{0}=$ no connection
$\mathrm{H}_{1}=y e s$ connection

Stage 2 -Deciding the level of significance

-Declaring refutation \%

- $\sigma=0.05$
- 2 tailed
- $\mathrm{DF}=\mathrm{n}-2=18$
- $\mathrm{T}_{\mathrm{c}}=2.101$
- $-2.101 \leq \mathrm{T} \leq 2.101$

0 areas of refutation: $\mathrm{T}>2.101$ and $\mathrm{T}<-2.101$

Stage 3 -Statistical computations

$\mathrm{T}(\mathrm{n}-2)=\mathrm{rx} \quad \sqrt{(\mathrm{n}-2)}$
$\sqrt{1-\mathrm{r}^{2}}$
$=3.18$
$\rightarrow \mathrm{H}_{0}$ is refuted

```
#5
14 # 4
11
16 #8
19 - but not #5
```

Descriptive statistics: stats that describe the variables, such as mean/mode/SD/DF/frequency
-unless stated, it is 2-tailed
-know $1.96=5 \%$
-the formula for SD of population/variance
-unless alpha is stated, stated, it is 5\%
-division of normative distribution: 34,13,2

Analysis of variance

-checks estimates in relations b / w diff. in variances
-diff in population averages
\rightarrow called variance tests

- 1 directional: -there is 1 independent variable

```
Oor 1 directional
    does ethnicity affect anxiety
```

- 2-directional: there are 2 independent variable:
\rightarrow i.e. does gender and ethnicity effect anxiety
i.e. I have 3 grade 5 math teachers. Marks of the 3 teachers:
$\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$
$\begin{array}{lll}9 & 5 & 10\end{array}$
$7 \quad 6 \quad 9$
$9 \quad 5 \quad 9$
$7 \quad 610$
-Note: depending on the experiment we might want to refute $\underline{\boldsymbol{O R}}$ accept H_{0}
Example

$\boldsymbol{A}_{\boldsymbol{I}}$	$\boldsymbol{A}_{\boldsymbol{2}}$	$\boldsymbol{A}_{\boldsymbol{3}}$	$\boldsymbol{A}_{\boldsymbol{4}}$
1	2	4	6
1	1	3	6
2	3	2	5
4	6	3	3
--	--	--	--
2	3	3	$5(/ \mathrm{X})$

-average of the averages

$$
\begin{aligned}
& =13 / 4 \\
& =3.25
\end{aligned}
$$

Note:

-pfirst participant is called: X_{11}
-second one (the one below him in the first group) is called X_{21}
$\mathrm{X} \bullet_{1} \rightarrow$ the dot relates to all in that category \rightarrow all I's in $\mathrm{J} \# 1$
$\mathrm{X}_{1} \bullet \rightarrow$ all I $=1$ across groups (Js)
$\mathrm{X} \bullet \bullet \rightarrow$ all I and all J (i.e. /X)
X_{IJ}
$\rightarrow \mathrm{I}=$ individual
$\rightarrow \mathrm{J}=$ group

Formula

S^{2} w
B $=$ between
$\mathrm{W}=$ within
Note: 2 kinds of variance:

- 'Between' variance -between groups
- 'Within' variance - within each group

Question of researcher: why did everyone not get the average?
Answer: explained variance, such as 'environment/genes/etc.'

- if B is bigger than W , then there is population diff.
- If W is bigger than B, then you know that the diff. (variance) is individual and not population-differences.
\rightarrow therefore, to establish a significant diff. b / w populations, then:

$$
\frac{\mathrm{S}^{2}}{\mathrm{~S}^{2} \underline{\mathrm{~B}}}>1
$$

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Source } & \begin{array}{l}\text { Ss } \\ \text { (sum of } \\ \text { squares } \\ \text { between } \\ \text { groups) }\end{array} & \text { DF } & \begin{array}{l}\text { MS } \\ \text { (mean } \\ \text { square) }\end{array} & \text { F } \\ \hline \begin{array}{l}\text { B } \\ \text { (between) }\end{array} & \begin{array}{l}\text { K-1 } \\ \text { (K =\# of groups) }\end{array} & \text { SS/DF }\end{array}\right]$
$\sum \sum\left(\mathrm{X}_{\mathrm{IJ}} / \mathrm{X}\right)^{2}=\sum \sum\left(\mathrm{X}_{\mathrm{IJ}} / \mathrm{X}_{\mathrm{I}}\right)^{2}+\sum \mathrm{n}_{\mathrm{j}}\left(/ \mathrm{X}_{\mathrm{j}}-/ \mathrm{X}\right)^{2}$
-Total Within Between
$\mathrm{J}=$ column
I-row/individual

$\mathbf{M S B}=\mathbf{S S B} / \mathbf{D F}_{\mathbf{b}}$

$\mathrm{SSB}=\sum \mathrm{n}_{\mathrm{j}}\left(/ \mathrm{X}_{\mathrm{j}}-/ \mathrm{X}\right)^{2}$
DF $=\mathrm{k}-1$

MSW $=\mathbf{S S W} / \mathbf{D F}$

$\mathrm{SSW}=\sum \sum\left(\mathrm{X}_{\mathrm{IJ}} / \mathrm{X}_{\mathrm{I}}\right)^{2}$

MST $=$ SST $/$ DF $_{t}$

$\mathrm{SST}=\sum \sum\left(\mathrm{X}_{\mathrm{IJ}} / \mathrm{X}\right)^{2}$
$\mathrm{SST}=\mathrm{SSB}+\mathrm{SSW}$
DFT $=\mathrm{DFB}+\mathrm{SDW}$

Example

The researcher wants to see diff. lighting affects on plants

- 12 plans randomly divided into 3 groups
A_{1}-regular light conditions
A_{2} - in natural dark
$\mathrm{A}_{3}-$ in artificial light
A_{4}-artificial dark

	$\underline{\mathbf{A}}_{\mathbf{1}}$	$\underline{\mathbf{A}}_{\mathbf{2}}$	$\underline{\mathbf{A}}_{\mathbf{3}}$	$\underline{\mathbf{A}}_{\mathbf{4}}$
$\mathbf{1}$	1	2	4	6
$\mathbf{2}$	1	1	3	6
$\mathbf{3}$	2	3	2	5
$\mathbf{4}$	4	6	3	3
Total's average	2	3	3	5

-average of $\mathrm{A}_{1-4}=3.25$
$(1-3.25)^{2}+(2-3.25)^{2} \rightarrow$ etc...
-some of the diff. is b / c of their groups (explained variance)
-called effect (B)
-other diff. if b / c individual diff.
\rightarrow the researchers say that this diff. is a mistake (W) \rightarrow we can't control it.
-variance b / w groups (w)[the numerator] is Mistake+effect
Mean variance between $\quad=\underline{\text { MSB }}$
Mean variance within MSW
Ss =sum of squares between groups
SS/DF = MS
SSB/DF $=$ MSB
SSW/DF $=$ MSW

Source	$\underline{\text { SS }}$	$\underline{\mathbf{D F}}$	$\mathbf{M S}$	\mathbf{F}	$\underline{\mathbf{P}}$
\mathbf{B}	SSB	$\mathrm{n}-1=3$	$\mathrm{SSB} / \mathrm{k}-1$	$\mathbf{M S B} / \mathrm{MSW}$	$\mathrm{P}<0.05$
$\underline{\mathbf{W}}$	SSW	$\mathrm{K}(\mathrm{n}-1)$	SSW/N-K		
$\underline{\mathbf{T}}$	SST		SST $/ \mathrm{n}-1$		

$\underline{\mathbf{H}}_{\mathbf{0}}=$ all averages are equal
$\underline{\mathbf{H}}_{\mathbf{1}}=$ if even 1 is not equal, than H 1 is true
-the answer is looked up in the F chart. The top \# is for 1% the bottom is for 5%.
-

Sheffe**

-post-hoc: after the fact
-once I found that there is a significant diff. I want to know which one is the diff. one out of one of the group.
-Only works when the result is significant!!
-You take out 2 columns randomly and compare them, using a formula -I know that the diff. b / w the top and bottom one is significant b / c the result is significant.
-if the answer is above critical value $\mathrm{x} \mathrm{k}-1 \rightarrow$ then that is the diff. isn't significant
\rightarrow if the answer is lower, than it is significant
\rightarrow there could be several significantly diff. variables

2-way Analysis of variance (2-way Anova (analysis of variance)

-2 factors
\rightarrow i.e. if there is a diff. of mean of groups when there is 2 independent \backslash factors to 1 dependant factors

Example:

-An experimenter wanted to know which kinds of psychotherapies are appropriate for which disorders.
-he turns to dynamic and cognitive therapists to give info about 2 kinds of patients:
neurosis and personal problems
-for each patient, the subjective improvement was measured in a range of 0-10
-subjective view -dependant
-kind of therapy: independent

	Neurotic	Personality problems	Average
Dynamic	9	5	7
Cognitive	6	6	6
Total:	7.5	5.5	6.5

Effect: the diff. b/w means

1) Main effect -the influence of the independent on the dependant beyond the other independent variables (i.e. the diff. b / w row average and columns)
\rightarrow i.e. the contrast b / w therapy and disorder, regardless of the kind of disorder or therapy

- kind of therapy: is there improvement in those who went to cognitive vs. those who went to dynamic? (regardless of the kind of disorder)
\rightarrow note: it gives is a relations, but not causality
\rightarrow you merely check the total to see which is bigger, the cognitive or dynamic
- kinds of disorders
\rightarrow i.e. run a t-test b / w the columns

2) Interaction effect

- things that we didn't expect
- The interaction (diff.) of the 2 independent variables to each other and their effects on he dependent variable
- Example: is there a diff in differences b / w the rows/ columns (Depends on what you're comparing). If there is no diff., there is no interaction \rightarrow Is there on a differential effect of the therapy on the subjective feeling, as a function in the kind of therapy/disorder
\rightarrow is there something special?
-i.e. if you chart the progress of the 2 variables whatever you're looking at, any 2 that are not parallel is an interaction
-Question on test: Experiment 2X3X4 =there are 3 factors. One of them has 2 variables, one has 3 and one has 4.

Formula for 2 way ANOVA

$\sum \sum \sum(\text { Xirc-/X.... })^{2}=\mathrm{nC} \sum(/ \mathrm{X} . r .-/ \mathrm{X} . .)+.\mathrm{nR} \sum(/ \mathrm{c} . . \mathrm{c}-/ \mathrm{x} . . .)^{2}+\mathrm{n} \sum \sum(/ \mathrm{X} . \mathrm{rc}-/ \mathrm{X} . . \mathrm{r} . / \mathrm{X} . . \mathrm{c}+/ \mathrm{X} . . .)^{2}+$ $\Sigma \Sigma \Sigma\left(\right.$ Xirc-/X.rc) ${ }^{2}$

	SS	DF	MS	F
Rows				
Columns				

Interaction				
Within				
Total				
Explanation for Formula for 2 way ANOVA				
$\sum \sum \sum(\text { Xirc-/X... })^{2}=\mathrm{nC} \sum\left(/ \mathrm{X.r.-/X..)}+.\mathrm{nR} \sum(/ \mathrm{c} . \mathrm{c}-/ \mathrm{x} . . .)^{2}+\mathrm{n} \sum \sum(/ \mathrm{X} . \mathrm{rc}-/ \mathrm{X} . . \mathrm{r} .-/ \mathrm{X} . . \mathrm{c}+/ \mathrm{X} . . .)^{2}+\right.$				
$\sum \sum \sum(\text { Xirc-/X.rc })^{2}$				
$\mathrm{n}=$ the actual \# in the variable. Not the \# of variables				
$* *$				

-analysis of variance w/ 2 variables
Example of 2-way ANOVA

	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$
$\mathrm{~B}_{1}$	2	3	1
	4	5	5
$\mathrm{~B}_{2}$	1	4	7
	1	7	4

Note:

-except Chi-square and spearman, the assumption is that the distribution is normal.
In 1-way Anova: $\mathrm{SST}=\mathrm{SSW}+\mathrm{SSB}$
In 2-way Anova: $\mathrm{SST}=\mathrm{SSW}+\mathrm{SSB}\left(\mathrm{SS}_{\mathrm{int}}+\mathrm{SS}_{\mathrm{r}}+\mathrm{SS}_{\mathrm{c}}\right)$ interaction + column + row $)$

- $\mathrm{n} \rightarrow \mathrm{I}$ (number of variable)
- $\mathrm{R} \rightarrow \mathrm{r}$ (\# of row)
- $\mathrm{C} \rightarrow \mathrm{c}$ (\# of column)
- rci
$\rightarrow \mathrm{rci}-111=2$ in the box above
$\rightarrow \mathrm{rci}-121=3$
\rightarrow /X1.. \rightarrow average of row

SSW

$\left.\sum \sum \mathrm{Xrci} / \mathrm{xrc}.\right)^{2}$

Fc	Fr	Fint

Source	Ss	Df	Ms	F	P
Row	SSr	$\mathrm{r}-1$	SSr/r-1	MSR/MsW	
Column	SSc	$\mathrm{c}-1$	SSc/c-1	MSC/MSW	
Interaction	Ssint	(c-1)(r-1)	SSint/r-1c-2	MSint/MSW	
	SSw	B-(rc)	SSw/n-rc		
Total	SST	$\mathrm{n}-1$			

Example:

Researcher wanted to know which therapyu is best fgor which people:
Therapy: Dynamic/cognitive
Problem: neurotic/personal

	Neurotic	Personality	Average
Dynamic	9	5	7
Cognitive	6	6	6
Total	7.5	5.5	6.5

Stage 1 phrasing of hypothesis

$\mathrm{H}_{0}: \mu .1 .=\mu .2$.
$\mathrm{H}_{1}: \mu .1 . \neq \mu .2$.
**

stage 2

alpha is 5%-since no other info was given
2-tailed test, yet in practice in is 1 tailed due to its structure

stage 3

DFr $=\mathrm{r}-1$
$\mathrm{DFc}=\mathrm{c}-1$
Dfint $=\mathrm{n}$-rc
DFw $=$
$\mathrm{F}=$

[^0]: Answer:
 1)
 $\mathrm{P}=0.6$
 $\mathrm{Q}=0.4$
 $\mathrm{N}=7$
 $\mathrm{R}=0$
 $\frac{7!}{0!X 7!} \times(0 \times 6)^{0} \times(0 \times 4)^{7-0}$
 2)
 $\epsilon(x)=365(0.6)$
 $\epsilon(x)=219$

